Abstract Coastal salt marshes store large amounts of carbon but the magnitude and patterns of greenhouse gas (GHG; i.e., carbon dioxide (CO2) and methane (CH4)) fluxes are unclear. Information about GHG fluxes from these ecosystems comes from studies of sediments or at the ecosystem‐scale (eddy covariance) but fluxes from tidal creeks are unknown. We measured GHG concentrations in water, water quality, meteorological parameters, sediment CO2efflux, ecosystem‐scale GHG fluxes, and plant phenology; all at half‐hour intervals over 1 year. Manual creek GHG flux measurements were used to calculate gas transfer velocity (k) and parameterize a model of water‐to‐atmosphere GHG fluxes. The creek was a source of GHGs to the atmosphere where tidal patterns controlled diel variability. Dissolved oxygen and wind speed were negatively correlated with creek CH4efflux. Despite lacking a seasonal pattern, creek CO2efflux was correlated with drivers such as turbidity across phenological phases. Overall, nighttime creek CO2efflux (3.6 ± 0.63 μmol/m2/s) was at least 2 times higher than nighttime marsh sediment CO2efflux (1.5 ± 1.23 μmol/m2/s). Creek CH4efflux (17.5 ± 6.9 nmol/m2/s) was 4 times lower than ecosystem‐scale CH4fluxes (68.1 ± 52.3 nmol/m2/s) across the year. These results suggest that tidal creeks are potential hotspots for CO2emissions and could contribute to lateral transport of CH4to the coastal ocean due to supersaturation of CH4(>6,000 μmol/mol) in water. This study provides insights for modeling GHG efflux from tidal creeks and suggests that changes in tide stage overshadow water temperature in determining magnitudes of fluxes.
more »
« less
High methane concentrations in tidal salt marsh soils: Where does the methane go?
Abstract Tidal salt marshes produce and emit CH4. Therefore, it is critical to understand the biogeochemical controls that regulate CH4spatial and temporal dynamics in wetlands. The prevailing paradigm assumes that acetoclastic methanogenesis is the dominant pathway for CH4production, and higher salinity concentrations inhibit CH4production in salt marshes. Recent evidence shows that CH4is produced within salt marshes via methylotrophic methanogenesis, a process not inhibited by sulfate reduction. To further explore this conundrum, we performed measurements of soil–atmosphere CH4and CO2fluxes coupled with depth profiles of soil CH4and CO2pore water gas concentrations, stable and radioisotopes, pore water chemistry, and microbial community composition to assess CH4production and fate within a temperate tidal salt marsh. We found unexpectedly high CH4concentrations up to 145,000 μmol mol−1positively correlated with S2−(salinity range: 6.6–14.5 ppt). Despite large CH4production within the soil, soil–atmosphere CH4fluxes were low but with higher emissions and extreme variability during plant senescence (84.3 ± 684.4 nmol m−2 s−1). CH4and CO2within the soil pore water were produced from young carbon, with most Δ14C‐CH4and Δ14C‐CO2values at or above modern. We found evidence that CH4within soils was produced by methylotrophic and hydrogenotrophic methanogenesis. Several pathways exist after CH4is produced, including diffusion into the atmosphere, CH4oxidation, and lateral export to adjacent tidal creeks; the latter being the most likely dominant flux. Our findings demonstrate that CH4production and fluxes are biogeochemically heterogeneous, with multiple processes and pathways that can co‐occur and vary in importance over the year. This study highlights the potential for high CH4production, the need to understand the underlying biogeochemical controls, and the challenges of evaluating CH4budgets and blue carbon in salt marshes.
more »
« less
- Award ID(s):
- 1652594
- PAR ID:
- 10478187
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Change Biology
- Volume:
- 30
- Issue:
- 1
- ISSN:
- 1354-1013
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Tidal wetlands provide valuable ecosystem services, including storing large amounts of carbon. However, the net exchanges of carbon dioxide (CO2) and methane (CH4) in tidal wetlands are highly uncertain. While several biogeochemical models can operate in tidal wetlands, they have yet to be parameterized and validated against high‐frequency, ecosystem‐scale CO2and CH4flux measurements across diverse sites. We paired the Cohort Marsh Equilibrium Model (CMEM) with a version of the PEPRMT model called PEPRMT‐Tidal, which considers the effects of water table height, sulfate, and nitrate availability on CO2and CH4emissions. Using a model‐data fusion approach, we parameterized the model with three sites and validated it with two independent sites, with representation from the three marine coasts of North America. Gross primary productivity (GPP) and ecosystem respiration (Reco) modules explained, on average, 73% of the variation in CO2exchange with low model error (normalized root mean square error (nRMSE) <1). The CH4module also explained the majority of variance in CH4emissions in validation sites (R2 = 0.54; nRMSE = 1.15). The PEPRMT‐Tidal‐CMEM model coupling is a key advance toward constraining estimates of greenhouse gas emissions across diverse North American tidal wetlands. Further analyses of model error and case studies during changing salinity conditions guide future modeling efforts regarding four main processes: (a) the influence of salinity and nitrate on GPP, (b) the influence of laterally transported dissolved inorganic C on Reco, (c) heterogeneous sulfate availability and methylotrophic methanogenesis impacts on surface CH4emissions, and (d) CH4responses to non‐periodic changes in salinity.more » « less
-
Abstract Methane (CH4) is a potent greenhouse gas (GHG) with atmospheric concentrations that have nearly tripled since pre‐industrial times. Wetlands account for a large share of global CH4emissions, yet the magnitude and factors controlling CH4fluxes in tidal wetlands remain uncertain. We synthesized CH4flux data from 100 chamber and 9 eddy covariance (EC) sites across tidal marshes in the conterminous United States to assess controlling factors and improve predictions of CH4emissions. This effort included creating an open‐source database of chamber‐based GHG fluxes (https://doi.org/10.25573/serc.14227085). Annual fluxes across chamber and EC sites averaged 26 ± 53 g CH4m−2 year−1, with a median of 3.9 g CH4m−2 year−1, and only 25% of sites exceeding 18 g CH4m−2 year−1. The highest fluxes were observed at fresh‐oligohaline sites with daily maximum temperature normals (MATmax) above 25.6°C. These were followed by frequently inundated low and mid‐fresh‐oligohaline marshes with MATmax ≤25.6°C, and mesohaline sites with MATmax >19°C. Quantile regressions of paired chamber CH4flux and porewater biogeochemistry revealed that the 90th percentile of fluxes fell below 5 ± 3 nmol m−2 s−1at sulfate concentrations >4.7 ± 0.6 mM, porewater salinity >21 ± 2 psu, or surface water salinity >15 ± 3 psu. Across sites, salinity was the dominant predictor of annual CH4fluxes, while within sites, temperature, gross primary productivity (GPP), and tidal height controlled variability at diel and seasonal scales. At the diel scale, GPP preceded temperature in importance for predicting CH4flux changes, while the opposite was observed at the seasonal scale. Water levels influenced the timing and pathway of diel CH4fluxes, with pulsed releases of stored CH4at low to rising tide. This study provides data and methods to improve tidal marsh CH4emission estimates, support blue carbon assessments, and refine national and global GHG inventories.more » « less
-
Abstract Tidal wetlands are comprised of complex interdependent pathways where measurements of carbon exchange are often scale dependent. Common data collection methods (i.e., chambers and eddy covariance) are inherently constrained to different spatial and temporal scales which could generate biased information for applications of carbon accounting, identifying functional relationships and predicting future responses to climate change. Consequently, it is needed to systematically evaluate measurements derived from multiple approaches to identify differences and how techniques complement each other to reconcile interpretations. To accomplish this, we tested ecosystem‐scale eddy covariance with plot‐scale chamber measurements within a temperate salt marsh. We found good agreement (R2 = 0.71–0.95) when comparing measurements of CH4emissions and CO2exchange but this agreement was dependent upon canopy phenology with discrepancies mainly arising during senescence and dormancy phenophases. The environmental drivers for CH4and CO2fluxes were mostly preserved across different measurement techniques, but the number of drivers increases while their individual strength decreases at the ecosystem scale. Empirical upscaling models parameterized with chamber measurements overestimated annual net ecosystem exchange (NEE; 108%) and gross primary production (GPP; 12%) while underestimating ecosystem respiration (Reco; 14%) and CH4emissions (69%) compared to eddy covariance measurements. Our results suggest that the environmental complexity of CH4and CO2fluxes in salt marshes may be underestimated by chamber‐based measurements, and highlights how different techniques are complementary while considering limitations at each level of measurement.more » « less
-
Coastal salt marshes store large amounts of carbon but the magnitude and patterns of greenhouse gas (GHG; i.e., carbon dioxide (CO2</sub>) and methane (CH4</sub>)) fluxes are unclear. Information about GHG fluxes from these ecosystems comes from studies of sediments or at the ecosystem-scale (eddy covariance) but fluxes from tidal creeks are unknown. </div>This dataset includes GHG concentrations in water, water quality, meteorology, sediment CO2</sub> efflux, ecosystem-scale GHG fluxes, and plant phenology; all at half-hour time-steps over one year.</div></div>This study was carried out in the St. Jones Reserve, a component of the Delaware National Estuarine Research Reserve in Dover, Delaware, U.S.A. The study site is part of the following networks:</div></div>- AmeriFlux (https://ameriflux.lbl.gov/sites/siteinfo/US-StJ) </div>- Phenocam (https://phenocam.sr.unh.edu/webcam/sites/stjones/) </div></div>The GHG concentration and efflux sampling point was located at Aspen Landing within a microtidal (mean tide range of 1.5 m), mesohaline (typical salinity of 5-18 ppt) salt marsh (Delaware Department of Natural Resources and Environmental Control, 2006) tidal creek.</div></div>Main reference:</div> Trifunovic, B., Vázquez‐Lule, A., Capooci, M., Seyfferth, A. L., Moffat, C., & Vargas, R. (2020). Carbon dioxide and methane emissions from a temperate salt marsh tidal creek. Journal of Geophysical Research: Biogeosciences, 125, e2019JG005558. https://doi.org/ 10.1029/2019JG005558 </p> </div> </div> </div></div>more » « less