skip to main content


Title: Multifrequency General Relativistic Radiation Magnetohydrodynamic Simulations of Thin Disks
Abstract

We present a set of six general relativistic, multifrequency, radiation magnetohydrodynamic simulations of thin accretion disks with different target mass accretion rates around black holes with spins ranging from nonrotating to rapidly spinning. The simulations use theM1closure scheme with 12 independent frequency (or energy) bins ranging logarithmically from 5 × 10−3keV to 5 × 103keV. The multifrequency capability allows us to generate crude spectra and energy-dependent light curves directly from the simulations without a need for special postprocessing. While we generally find roughly thermal spectra with peaks around 1–4 keV, our high-spin cases showed harder-than-expected tails for the soft or thermally dominant state. This leads to radiative efficiencies that are up to five times higher than expected for a Novikov–Thorne disk at the same spin. We attribute these high efficiencies to the high-energy, coronal emission. These coronae mostly occupy the effectively optically thin regions near the inner edges of the disks and also cover or sandwich the inner ∼15GM/c2of the disks.

 
more » « less
NSF-PAR ID:
10478204
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
959
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 59
Size(s):
Article No. 59
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In many black hole (BH) systems, the accretion disk is expected to be misaligned with respect to the BH spin axis. If the scale height of the disk is much smaller than the misalignment angle, the spin of the BH can tear the disk into multiple, independently precessing “sub-disks.” This is most likely to happen during outbursts in black hole X-Ray binaries (BHXRBs) and in active galactic nuclei (AGNs) accreting above a few percent of the Eddington limit, because the disk becomes razor-thin. Disk tearing has the potential to explain variability phenomena including quasi-periodic oscillations in BHXRBs and changing-look phenomena in AGNs. Here, we present the first radiative two-temperature general relativistic magnetohydrodynamic (GRMHD) simulation of a strongly tilted (65°) accretion disk around anMBH= 10MBH, which tears and precesses. This leads to luminosity swings between a few percent and 50% of the Eddington limit on sub-viscous timescales. Surprisingly, even where the disk is radiation-pressure-dominated, the accretion disk is thermally stable overt≳ 14,000rg/c. This suggests warps play an important role in stabilizing the disk against thermal collapse. The disk forms two nozzle shocks perpendicular to the line of nodes where the scale height of the disk decreases tenfold and the electron temperature reachesTe∼ 108–109K. In addition, optically thin gas crossing the tear between the inner and outer disk gets heated toTe∼ 108K. This suggests that warped disks may emit a Comptonized spectrum that deviates substantially from idealized models.

     
    more » « less
  2. Abstract

    Multiwavelength observations suggest that the accretion disk in the hard and intermediate states of X-ray binaries (XRBs) and active galactic nucleus transitions from a cold, thin disk at large distances into a hot, thick flow close to the black hole (BH). However, the formation, structure, and dynamics of such truncated disks are poorly constrained due to the complexity of the thermodynamic, magnetic, and radiative processes involved. We present the first radiation-transport two-temperature general relativistic magnetohydrodynamic (GRMHD) simulations of truncated disks radiating at ∼35% of the Eddington luminosity with and without large-scale poloidal magnetic flux. We demonstrate that when a geometrically thin accretion disk is threaded by large-scale net poloidal magnetic flux, it self-consistently transitions at small radii into a two-phase medium of cold gas clumps floating through a hot, magnetically dominated corona. This transition occurs at a well-defined truncation radius determined by the distance out to which the disk is saturated with magnetic flux. The average ion and electron temperatures in the semiopaque corona reach, respectively,Ti≳ 1010K andTe≳ 5 × 108K. The system produces radiation, powerful collimated jets, and broader winds at the total energy efficiency exceeding 90%, the highest ever energy extraction efficiency from a spinning BH by a radiatively efficient flow in a GRMHD simulation. This is consistent with jetted ejections observed during XRB outbursts. The two-phase medium may naturally lead to broadened iron line emission observed in the hard state.

     
    more » « less
  3. Abstract

    Very young (t≲ 10 Myr) stars possess strong magnetic fields that channel ionized gas from the interiors of their circumstellar disks to the surface of the star. Upon impacting the stellar surface, the shocked gas recombines and emits hydrogen spectral lines. To characterize the density and temperature of the gas within these accretion streams, we measure equivalent widths of Brackett (Br) 11–20 emission lines detected in 1101 APOGEE spectra of 326 likely pre-main-sequence accretors. For sources with multiple observations, we measure median epoch-to-epoch line strength variations of 10% in Br11 and 20% in Br20. We also fit the measured line ratios to predictions of radiative transfer models by Kwan & Fischer. We find characteristic best-fit electron densities ofne= 1011–1012cm−3, and excitation temperatures that are inversely correlated with electron density (fromT∼ 5000 K forne∼ 1012cm−3toT∼ 12,500 K atne∼ 1011cm−3). These physical parameters are in good agreement with predictions from modeling of accretion streams that account for the hydrodynamics and radiative transfer within the accretion stream. We also present a supplementary catalog of line measurements from 9733 spectra of 4255 Brackett emission-line sources in the APOGEE Data Release 17 data set.

     
    more » « less
  4. Abstract

    Two bipolar host materials3‐CBPyand4‐mCBPyare reported. These hosts are structural analogs of the common host materials CBP and mCBP wherein the phenyl rings have been replaced with pyridines. The two materials possess deep highest occupied molecular orbital (HOMO) and shallow lowest unoccupied molecular orbital (LUMO) levels along with sufficiently high energyS1andT1states that make them suitable hosts for yellow emitters in electroluminescent devices. Yellow‐emitting thermally activated delayed fluorescence organic light‐emitting diodes are fabricated using 2,4,6‐tris (4‐(10H‐phenoxazin‐10‐yl)phenyl)‐1,3,5‐triazine (tri‐PXZ‐TRZ) as the dopant emitter with either3‐CBPyor4‐mCBPyemployed as the host. Their device performance is compared to analogous devices using CBP and mCBP as host materials. The pyridine‐containing host devices show markedly improved external quantum efficiencies (EQE) and decreased roll‐off. The 7 wt% tri‐PXZ‐TRZ‐doped device exhibits very low turn‐on voltage (2.5 V for both3‐CBPyand4‐mCBPy) along with maximum external quantum efficiencies (EQEmax) reaching 15.6% (for3‐CBPy) and 19.4% (for4‐mCBPy). The device using4‐mCBPyalso exhibits very low efficiency roll‐off with an EQE of 16.0% at a luminance of 10 000 cd m−2.

     
    more » « less
  5. Abstract

    The angular momentum of gas feeding a black hole (BH) may be misaligned with respect to the BH spin, resulting in a tilted accretion disk. Rotation of the BH drags the surrounding spacetime, manifesting as Lense–Thirring torques that lead to disk precession and warping. We study these processes by simulating a thin (H/r= 0.02), highly tilted (=65°) accretion disk around a rapidly rotating (a= 0.9375) BH at extremely high resolutions, which we performed using the general-relativistic magnetohydrodynamic codeH-AMR. The disk becomes significantly warped and continuously tears into two individually precessing subdisks. We find that mass accretion rates far exceed the standardα-viscosity expectations. We identify two novel dissipation mechanisms specific to warped disks that are the main drivers of accretion, distinct from the local turbulent stresses that are usually thought to drive accretion. In particular, we identify extreme scale height oscillations that occur twice an orbit throughout our disk. When the scale height compresses, “nozzle” shocks form, dissipating orbital energy and driving accretion. Separate from this phenomenon, there is also extreme dissipation at the location of the tear. This leads to the formation of low-angular momentum “streamers” that rain down onto the inner subdisk, shocking it. The addition of low-angular momentum gas to the inner subdisk causes it to rapidly accrete, even when it is transiently aligned with the BH spin and thus unwarped. These mechanisms, if general, significantly modify the standard accretion paradigm. Additionally, they may drive structural changes on much shorter timescales than expected inα-disks, potentially explaining some of the extreme variability observed in active galactic nuclei.

     
    more » « less