skip to main content


Title: Validation of large area capacitive sensors for impact damage assessment
Abstract

Impacts in fiber-reinforced polymer matrix composites can severely inhibit their functionality and prematurely lead to the composite’s failure. This research focuses on determining the efficacy of a novel capacitive sensor, termed as the soft elastomeric capacitor (SEC), to monitor the magnitude of out-of-plane deformations in composites. This work forwards the development of a sensing skin that can be used as anin situmonitoring tool for composites. The capacitive sensor can be made to arbitrary sizes and geometries. The sensor is composed of an elastomer composite that measures strains experienced by the material it is bonded to. The structure of the sensor, fabricated to function as a parallel plate capacitor, responds to impacts by transducing strains into a measurable change in capacitance. In this work, the SECs are deployed on randomly oriented fiberglass-reinforced plates with a polyester resin matrix. The material is impacted at various energy levels until the monitored composite material reaches its yielding point. The behavior of the sensor in impact detection applications below the proof resilience shows little to no change in the capacitance of the sensor. As the impacts surpass this yielding point, the sensor responds linearly with induced change in the area. The sensor performed within the expectations of the proposed model and demonstrated the efficacy of the proposed large-area sensor as a damage quantification tool in the structural health monitoring of composites.

 
more » « less
NSF-PAR ID:
10478206
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Measurement Science and Technology
Volume:
35
Issue:
3
ISSN:
0957-0233
Format(s):
Medium: X Size: Article No. 035106
Size(s):
["Article No. 035106"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Fatigue-induced cracking in steel components and other brittle materials of civil structures is one of the primary mechanisms of degrading structural integrity and can lead to sudden failures. However, these cracks are often difficult to detect during visual inspections, and off-the-shelf sensing technologies can generally only be used to monitor already identified cracks because of their spatial localization. A solution is to leverage advances in large area electronics to cover large surfaces with skin-type sensors. Here, the authors propose an elastic and stretchable multifunctional skin sensor that combines optical and capacitive sensing properties. The multifunctional sensor consists of a soft stretchable structural color film sandwiched between transparent carbon nanotube electrodes to form a parallel plate capacitor. The resulting device exhibits a reversible and repeatable structural color change from light blue to deep blue with an angle-independent property, as well as a measurable change in capacitance, under external mechanical strain. The optical function is passive and engineered to visually assist in localizing fatigue cracks, and the electrical function is added to send timely warnings to infrastructure operators. The performance of the device is characterized in a free-standing configuration and further extended to a fatigue crack monitoring application. A correlation coefficient-based image processing method is developed to quantify the strain measured by the optical color response. Results show that the sensor performs well in detecting and quantifying fatigue cracks using both the color and capacitive signals. In particular, the color signal can be measured with inexpensive cameras, and the electrical signal yields good linearity, resolution, and accuracy. Tests conducted on two steel specimens demonstrate a minimum detectable crack length of 0.84 mm.

     
    more » « less
  2. null (Ed.)
    In situ monitoring of strain and damage in fiber-reinforced composites provides critical information regarding the state of the material without requiring the structure to be removed from operation. In order to avoid the use of complex, heavy, and bulky sensor networks to track the state of the structure, recent focus has turned to multifunctional materials with inherent characteristics which enable in situ monitoring. This work investigates laser induced graphene (LIG) integrated within aramid fiber reinforced composites for damage and strain sensing during mechanical loading. The LIG used here fully integrates the sensing material within the composite as the piezoresistive graphene layer is coated directly onto the reinforcing aramid fabric prior to infusing the fibers with the supporting matrix. The sensing element is thus not susceptible to environmental effects and adds no extra weight while also maintaining the specific strength of the material. As strain and damage occur within the composite, the LIG proves capable of tracking strain and detecting plastic deformation in situ. Thus, the result of this work is the integration of a multifunctional component into aramid composites which possesses in situ sensing capabilities. Furthermore, the processes and materials are easily scalable for the large-scale production of multifunctional aramid fiber reinforced composites. 
    more » « less
  3. Abstract

    The demand for the capacitive sensor has attracted substantial attention in monitoring pressure due to its distinctive design and passive nature with versatile sensing capability. The effectiveness of the capacitive sensor primarily relies on the variation in thickness of the dielectric layer sandwiched between conductive electrodes. Additive manufacturing (AM), a set of advanced fabrication techniques, enables the production of functional electronic devices in a single-step process. Particularly, the 3D printing approach based on photocuring is a tailorable process in which the resin consists of multiple components that deliver essential mechanical qualities with enhanced sensitivity towards targeted measurements. However, the availability of photocurable resin exhibiting essential flexibility and dielectric properties for the UV-curing production process is limited. The necessity of a highly stable and sensitive capacitive sensor demands a photocurable polymer resin with a higher dielectric constant and conductive electrodes. The primary purpose of this study is to design and fabricate a capacitive device composed of novel photocurable Polyvinylidene fluoride (PVDF) resin utilizing an LCD process exhibiting higher resolution with electrodes embedded inside the substrate. The embedded electrode channels in PVDF substrate are filled with conductive silver paste by an injection process. The additively manufactured sensor provides pressure information by means of a change in capacitance of the dielectric material between the electrodes. X-Ray based micro CT-Scan ex-situ analysis is performed to visualize the capacitance based sensor filled with conductive electrodes. The sensor is tested to measure capacitance response with changes in pressure as a function of time that are utilized for sensitivity analysis. This work represents a significant achievement of AM integration in developing efficient and robust capacitive sensors for pressure monitoring or wearable electronic applications.

     
    more » « less
  4. null (Ed.)
    Structural health monitoring of fiber reinforced composites is an extensive field of research that aims to reduce maintenance costs through in-situ damage detection. However, the need for externally bonded sensor systems and complicated fabrication processes limit the widespread application of most current structural health monitoring techniques. This work introduces a novel multifunctional fiber reinforced composite that relies on a ferroelectric prepreg fabricated using dehydrofluorinated (DHF) polyvinylidene fluoride (PVDF), which exhibits a thermally stable piezoelectric response. The self-sensing material presented in this work requires minimal external components, as the piezoelectric sensing mechanism is fully contained within the composite. This is accomplished by fabricating a ferroelectric prepreg consisting of DHF PVDF infused woven fiberglass, which is sandwiched between woven carbon fabric layers that act as electrodes, thus forming a piezoelectric sensor fabricated with entirely structural composite materials. Notably, the sensing material is a fully distributed prepreg rather than discretely embedded sensors which enables simplified monitoring of complex structures. As the composite experiences damage under flexural and tensile loading, the internal change in strain results in a charge separation that is detectable as a voltage emission across the sample electrodes. The self-sensing capabilities of this material are explored using traditional mechanical testing techniques, showing comparable performance to common damage detection methods, all while eliminating the need for external bonding of sensors to the structure. 
    more » « less
  5. null (Ed.)
    Structural health monitoring of fiber reinforced composites is an extensive field of research that aims to reduce maintenance costs through in-situ damage detection. However, the need for externally bonded sensor systems and complicated fabrication processes limit the widespread application of most current structural health monitoring techniques. This work introduces a novel multifunctional fiber reinforced composite that relies on a ferroelectric prepreg fabricated using dehydrofluorinated (DHF) polyvinylidene fluoride (PVDF), which exhibits a thermally stable piezoelectric response. The self-sensing material presented in this work requires minimal external components, as the piezoelectric sensing mechanism is fully contained within the composite. This is accomplished by fabricating a ferroelectric prepreg consisting of DHF PVDF infused woven fiberglass, which is sandwiched between woven carbon fabric layers that act as electrodes, thus forming a piezoelectric sensor fabricated with entirely structural composite materials. Notably, the sensing material is a fully distributed prepreg rather than discretely embedded sensors which enables simplified monitoring of complex structures. As the composite experiences damage under flexural and tensile loading, the internal change in strain results in a charge separation that is detectable as a voltage emission across the sample electrodes. The self-sensing capabilities of this material are explored using traditional mechanical testing techniques, showing comparable performance to common damage detection methods, all while eliminating the need for external bonding of sensors to the structure. 
    more » « less