skip to main content


Title: A vertically translating collection system to facilitate roll-to-roll centrifugal spinning of highly aligned polyacrylonitrile nanofibers
Abstract

Centrifugal spinning is a fiber spinning method capable of producing fibers in the nanoscale diameter range from a multitude of polymers, including polyacrylonitrile (PAN). With a traditional centrifugal spinner, fiber can be rapidly spun and collected on static collection posts. However, the use of posts inevitably forms a dense fiber “ring” that is incompatible with roll-to-roll manufacturing processes. In this work, factors that influence throughput and scalability of highly aligned centrifugally spun PAN fibers are explored. A custom centrifugal setup is used to vertically translate collected fibers during the spinning process to distribute them over a large surface area. In addition, factors that affect PAN fiber diameter during the spinning process are investigated, including spinneret to collector distance, rotational speed, and humidity. Resulting data demonstrates that these factors can be independently optimized to reliably produce quality PAN fiber in the nanoscale diameter range. Furthermore, the fiber mass collection rate can be increased without affecting sample quality when the vertical translation speed is increased. This work demonstrates the potential scalability of centrifugal spinning to quickly produce large amounts of highly aligned nanofiber in a cheap, efficient, and reliable manner, and also lends the ability to be collected in a roll-to-roll fashion.

 
more » « less
NSF-PAR ID:
10478216
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Discover Materials
Volume:
3
Issue:
1
ISSN:
2730-7727
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A parallel automated track collector is integrated with a rationally designed centrifugal spinning head to collect aligned polyacrylonitrile (PAN) nanofibers. Centrifugal spinning is an extremely promising nanofiber fabrication technology due to high production rates. However, continuous oriented fiber collection and processing presents challenges. Engineering solutions to these two challenges are explored in this study. A 3D‐printed head design, optimized through a computational fluid dynamics simulation approach, is utilized to limit unwanted air currents that disturb deposited nanofibers. An automated track collecting device has pulled deposited nanofibers away from the collecting area. This results in a continuous supply of individual aligned nanofibers as opposed to the densely packed nanofiber mesh ring that is deposited on conventional static post collectors. The automated track collector allows for simple integration of the postdraw processing step that is critical to polymer fiber manufacturing for enhancing macromolecular orientation and mechanical properties. Postdrawing has enhanced the mechanical properties of centrifugal spun PAN nanofibers, which have different crystalline properties compared with conventional PAN microfiber. These technological developments address key limitations of centrifugal spinning that can facilitate high production rate commercial fabrication of highly aligned, high‐performance polymer nanofibers.

     
    more » « less
  2. Fine polyacrylonitrile (PAN) fibers were produced through a scalable centrifugal spinning process. Sodium chloride (NaCl) was added to the PAN‐dimethylformamide solution to decrease the surface tension and consequently promote a decrease in fiber diameter while increasing the fiber output. The fiber preparation process involved the centrifugal spinning of the PAN‐based solution; developed fibers were stabilized in air at 240°C followed by carbonization at 800°C under a Nitrogen atmosphere. The addition of sodium chloride to the PAN solution led to a 37% decrease in the carbon fiber diameter. The carbon fibers were analyzed by scanning electron microcopy, transmission electron microscopy (TEM), X‐ray diffraction, X‐ray photoelectron spectroscopy (XPS) and electrochemical experiments. The TEM results revealed improved graphitization with the addition of sodium chloride. The XPS analysis showed increased functionality (e.g. O2) on the surface of carbon fibers obtained from PAN/NaCl precursor fibers. A significant improvement was achieved in the electrochemical performance of carbon fibers made from PAN/NaCl precursor fibers compared to those made from pure PAN precursor fibers. POLYM. ENG. SCI., 58:2047–2054, 2018. © 2018 Society of Plastics Engineers

     
    more » « less
  3. Abstract

    Forcespinning technique was used to fabricate sub-micron size polycaprolactone (PCL) fibers. Forcespinning method uses centrifugal forces for the generation of fibers unlike the electrospinning method which uses electrostatic force. PCL has been extensively used as scaffolds for cell regeneration, substrates for tissue engineering and in drug delivery systems. The aim of this study is to qualitatively analyze the force spun fiber mats and investigate the effect of the spinneret rotational speed on the fiber morphology, thermal and mechanical properties. The extracted fibers were characterized by scanning electron microscopy differential scanning calorimetry, tensile testing and dynamic mechanical analysis. The results showed that higher rotational speeds produced uniform fibers with less number of beads. The crystallinity of the fibers decreased with increase in rotational speeds. The Young’s modulus of the forcespun fibers was found to be in the range of 3.5 to 6 MPa. Storage and loss moduli decreased with the increase in the fiber diameter. The fibers collected at farther distance from spinneret exhibited optimal mechanical properties compared to the fibers collected at shorter distances. This study will aid in extracting fibers with uniform geometries and lower beads to achieve the desired nanofiber drug release properties.

     
    more » « less
  4. Abstract

    Copper nanoparticles (CuNPs) embedded in polyvinylpyrrolidone (PVP) and polyethylene oxide (PEO) fiber‐matrices were prepared through centrifugal spinning of PVP/ethanol and PEO/aqueous solutions, respectively. The prime focus of the current study is to investigate the antibacterial activity of composite fibers againstEscherichia coli(E. coli) andBacillus cereus(B. cereus) bacteria. During the fiber formation, the centrifugal spinning parameters such as spinneret rotational speed, spinneret to collector distance, and relative humidity were carefully chosen to obtain long and continuous fibers. The structural and morphological analyses of both composite fibers were investigated using scanning electron microscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy, and thermogravimetric analysis. In the antibacterial test, PVP/Cu and PEO/Cu composite fibrous membranes exhibited inhibition efficiency of 99.98% and 99.99% againstE. coliandB. cereusbacteria, respectively. Basically, CuNPs were well embedded in the fibrous membrane at the nanoscale level, which facilitated the inhibition of bacterial functions through the inactivation of the chemical structure of the cells. Such an effective antibacterial agent obtained from forcespun composite fibers could be promising candidates for biomedical applications.

     
    more » « less
  5. ABSTRACT

    This work addresses a systematic study for the process development and optimization of poly(d,l‐lactic acid) (PDLLA) submicrometer fibers utilizing the centrifugal spinning technique known as Forcespinning. This study analyzes the effect of polymer concentration (8, 10, and 12 wt %) and angular speed on the fiber morphology, diameter distribution, and fiber yield. The increase in polymer concentration and angular speed favored the formation of continuous and homogeneous submicrometer fibers with an absence of bead formation and higher output. The optimal conditions were established considering the morphological characteristics that exhibit a greater surface area (homogeneous and submicrometer fibers); and they were achieved at a polymer concentration of 10 wt % at an angular speed ranging from 8000 to 10 000 rpm. Optimization of PDLLA submicrometer fiber fabrication lays the groundwork for scaling up the process and serves as a platform to further develop promising applications of PDLLA nonwoven mats, particularly in the biomedical area such as in scaffolds for tissue engineering. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2019,136, 47643.

     
    more » « less