Abstract Climate warming in recent decades has negatively impacted forest health in the western United States. Here, we report on potential early warning signals (EWS) for drought‐related mortality derived from measurements of tree‐ring growth (ring width index; RWI) and carbon isotope discrimination (∆13C), primarily focused on ponderosa pine (Pinus ponderosa). Sampling was conducted in the southern Sierra Nevada Mountains, near the epicenter of drought severity and mortality associated with the 2012–2015 California drought and concurrent outbreak of western pine beetle (Dendroctonus brevicomis). At this site, we found that widespread mortality was presaged by five decades of increasing sensitivity (i.e., increased explained variation) of both tree growth and ∆13C to Palmer Drought Severity Index (PDSI). We hypothesized that increasing sensitivity of tree growth and ∆13C to hydroclimate constitute EWS that indicate an increased likelihood of widespread forest mortality caused by direct and indirect effects of drought. We then tested these EWS in additional ponderosa pine‐dominated forests that experienced varying mortality rates associated with the same California drought event. In general, drier sites showed increasing sensitivity of RWI to PDSI over the last century, as well as higher mortality following the California drought event compared to wetter sites. Two sites displayed evidence that thinning or fire events that reduced stand basal area effectively reversed the trend of increasing hydroclimate sensitivity. These comparisons indicate that reducing competition for soil water and/or decreasing bark beetle host tree density via forest management—particularly in drier regions—may buffer these forests against drought stress and associated mortality risk. EWS such as these could provide land managers more time to mitigate the extent or severity of forest mortality in advance of droughts. Substantial efforts at deploying additional dendrochronological research in concert with remote sensing and forest modeling will aid in forecasting of forest responses to continued climate warming.
more »
« less
Tailored Forecasts Can Predict Extreme Climate Informing Proactive Interventions in East Africa
Abstract This commentary discusses new advances in the predictability of east African rains and highlights the potential for improved early warning systems (EWS), humanitarian relief efforts, and agricultural decision‐making. Following an unprecedented sequence of five droughts, 23 million east Africans faced starvation in 2022, requiring >$2 billion in aid. Here, we update climate attribution studies showing that these droughts resulted from an interaction of climate change and La Niña. Then we describe, for the first time, how attribution‐based insights can be combined with the latest dynamical models to predict droughts at 8‐month lead‐times. We then discuss behavioral and social barriers to forecast use, and review literature examining how EWS might (or might not) enhance agro‐pastoral advisories and humanitarian interventions. Finally, in reference to the new World Meteorological Organization “Early Warning for All” Executive Action Plan, we conclude with a set of recommendations supporting actionable and authoritative climate services.Trust,urgency, andaccuracycan help overcome barriers created bylimitedfunding,uncertain tradeoffs, andinertia. Understanding how climate change is producing predictable climate extremes now, investing in African‐led EWS, and building better links between EWS and agricultural development efforts can support long‐term adaptation, reducing chronic needs for billions of dollars in reactive assistance. In Africa and beyond, climate change brings increasingly extreme sea surface temperature (SST) gradients. Using climate models, we can often see these extremes coming. Prediction, therefore, offers opportunities for proactive risk management and improved advisory services, if we can create effective societal linkages via cross‐silo collaborations.
more »
« less
- Award ID(s):
- 2236021
- PAR ID:
- 10478273
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Earth's Future
- Date Published:
- Journal Name:
- Earth's Future
- Volume:
- 11
- Issue:
- 7
- ISSN:
- 2328-4277
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Regime shifts have large consequences for ecosystems and the services they provide. However, understanding the potential for, causes of, proximity to, and thresholds for regime shifts in nearly all settings is difficult. Generic statistical indicators of resilience have been proposed and studied in a wide range of ecosystems as a method to detect when regime shifts are becoming more likely without direct knowledge of underlying system dynamics or thresholds. These early warning statistics (EWS) have been studied separately but there have been few examples that directly compare temporal and spatial EWS in ecosystem‐scale empirical data. To test these methods, we collected high‐frequency time series and high‐resolution spatial data during a whole‐lake fertilization experiment while also monitoring an adjacent reference lake. We calculated two common EWS, standard deviation and autocorrelation, in both time series and spatial data to evaluate their performance prior to the resulting algal bloom. We also applied the quickest detection method to generate binary alarms of resilience change from temporal EWS. One temporal EWS, rolling window standard deviation, provided advanced warning in most variables prior to the bloom, showing trends and between‐lake patterns consistent with theory. In contrast, temporal autocorrelation and both measures of spatial EWS (spatial SD, Moran's I) provided little or no warning. By compiling time series data from this and past experiments with and without nutrient additions, we were able to evaluate temporal EWS performance for both constant and changing resilience conditions. True positive alarm rates were 2.5–8.3 times higher for rolling window standard deviation when a lake was being pushed towards a bloom than the rate of false positives when it was not. For rolling window autocorrelation, alarm rates were much lower and no variable had a higher true positive than false positive alarm rate. Our findings suggest temporal EWS provide advanced warning of algal blooms and that this approach could help managers prepare for and/or minimize negative bloom impacts.more » « less
-
Chen, Kai (Ed.)Here we introduce a demand-driven framework designed to implement climate services in the health sector, with a particular focus on the Caribbean region. Climate services are essential for supporting informed decision-making and response strategies in relation to climate-related health risks. Through collaborative efforts, we are co-producing a climate-driven dengue early warning system (EWS) to target vector-borne diseases effectively. While challenges exist in implementing such systems, EWSs provide valuable tools for managing epidemic risks by predicting potential disease outbreaks in advance. The scarcity of operational climate tools in the health sector underscores the need for increased investment and strategic implementation practices. To address these challenges, a demand-driven framework is proposed, emphasizing strategic planning focused on health intervention development, partnership building, data, communication, human resources, capacity building, and sustainable funding. This framework aims to integrate climate services seamlessly into health systems, thereby enhancing public health resilience and facilitating well-informed decision-making to effectively address climate-sensitive diseases.more » « less
-
null (Ed.)Abstract The 2017 flash drought arrived without early warning and devastated the U.S. northern Great Plains region comprising Montana, North Dakota, and South Dakota and the adjacent Canadian Prairies. The drought led to agricultural production losses exceeding $2.6 billion in the United States, widespread wildfires, poor air quality, damaged ecosystems, and degraded mental health. These effects motivated a multiagency collaboration among academic, tribal, state, and federal partners to evaluate drought early warning systems, coordination efforts, communication, and management practices with the goal of improving resilience and response to future droughts. This essay provides an overview on the causes, predictability, and historical context of the drought, the impacts of the drought, opportunities for drought early warning, and an inventory of lessons learned. Key lessons learned include the following: 1) building partnerships during nondrought periods helps ensure that proper relationships are in place for a coordinated and effective drought response; 2) drought information providers must improve their understanding of the annual decision cycles of all relevant sectors, including, and beyond, direct impacts in agricultural sectors; and 3) ongoing monitoring of environmental conditions is vital to drought early warning, given that seasonal forecasts lack skill over the northern Great Plains.more » « less
-
Abstract The World Climate Research Programme (WCRP) envisions a world “that uses sound, relevant, and timely climate science to ensure a more resilient present and sustainable future for humankind.” This bold vision requires the climate science community to provide actionable scientific information that meets the evolving needs of societies all over the world. To realize its vision, WCRP has created five Lighthouse Activities to generate international commitment and support to tackle some of the most pressing challenges in climate science today. The overarching goal of the Lighthouse Activity on Explaining and Predicting Earth System Change is to develop an integrated capability to understand, attribute, and predict annual to decadal changes in the Earth system, including capabilities for early warning of potential high impact changes and events. This article provides an overview of both the scientific challenges that must be addressed, and the research and other activities required to achieve this goal. The work is organized in three thematic areas: (i) monitoring and modeling Earth system change; (ii) integrated attribution, prediction, and projection; and (iii) assessment of current and future hazards. Also discussed are the benefits that the new capability will deliver. These include improved capabilities for early warning of impactful changes in the Earth system, more reliable assessments of meteorological hazard risks, and quantitative attribution statements to support the Global Annual to Decadal Climate Update and State of the Climate reports issued by the World Meteorological Organization.more » « less