Aims.We cross-correlated galaxies from the LOw-Frequency ARray (LOFAR) Two-metre Sky Survey (LoTSS) second data release (DR2) radio source with the extended Baryon Oscillation Spectroscopic Survey (eBOSS) luminous red galaxy (LRG) sample to extract the baryon acoustic oscillation (BAO) signal and constrain the linear clustering bias of radio sources in LoTSS DR2. Methods.In the LoTSS DR2 catalogue, employing a flux density limit of 1.5 mJy at the central LoTSS frequency of 144 MHz and a signal-to-noise ratio (S/N) of 7.5, additionally considering eBOSS LRGs with redshifts between 0.6 and 1, we measured both the angular LoTSS-eBOSS cross-power spectrum and the angular eBOSS auto-power spectrum. These measurements were performed across various eBOSS redshift tomographic bins with a width of Δz = 0.06. By marginalising over the broadband shape of the angular power spectra, we searched for a BAO signal in cross-correlation with radio galaxies, and determine the linear clustering bias of LoTSS radio sources for a constant-bias and an evolving-bias model. Results.Using the cross-correlation, we measured the isotropic BAO dilation parameter asα = 1.01 ± 0.11 atzeff = 0.63. By combining four redshift slices atzeff = 0.63, 0.69, 0.75, and 0.81, we determined a more constrained value ofα = 0.968−0.095+0.060. For the entire redshift range ofzeff = 0.715, we measuredbC = 2.64 ± 0.20 for the constant-bias model,b(z0) =bC, and thenbD = 1.80 ± 0.13 for the evolving-bias model,b(z) =bD/D(z), withD(z) denoting the growth rate of linear structures. Additionally, we measured the clustering bias for individual redshift bins. Conclusions.We detected the cross-correlation of LoTSS radio sources and eBOSS LRGs at a 9.2σstatistical significance for one single redshift bin and at a 14.7σsignificance when the four redshift bins were combined. For the BAO signal, we achieved a significance of 2.2σfor a single redshift bin, 2.7σfor the combined cross-correlation and eBOSS auto-correlation, and 4σfor the combined analysis of four redshift bins in the cross-correlation, when assuming a Gaussian distribution for the BAO dilation parameter.
more »
« less
Cosmology from LOFAR Two-metre Sky Survey Data Release 2: angular clustering of radio sources
ABSTRACT Covering $$\sim 5600\, \deg ^2$$ to rms sensitivities of ∼70−100 $$\mu$$Jy beam−1, the LOFAR Two-metre Sky Survey Data Release 2 (LoTSS-DR2) provides the largest low-frequency (∼150 MHz) radio catalogue to date, making it an excellent tool for large-area radio cosmology studies. In this work, we use LoTSS-DR2 sources to investigate the angular two-point correlation function of galaxies within the survey. We discuss systematics in the data and an improved methodology for generating random catalogues, compared to that used for LoTSS-DR1, before presenting the angular clustering for ∼900 000 sources ≥1.5 mJy and a peak signal-to-noise ≥ 7.5 across ∼80 per cent of the observed area. Using the clustering, we infer the bias assuming two evolutionary models. When fitting angular scales of $$0.5 \le \theta \lt 5{^\circ }$$, using a linear bias model, we find LoTSS-DR2 sources are biased tracers of the underlying matter, with a bias of $$b_{\rm C}= 2.14^{+0.22}_{-0.20}$$ (assuming constant bias) and $$b_{\rm E}(z=0)= 1.79^{+0.15}_{-0.14}$$ (for an evolving model, inversely proportional to the growth factor), corresponding to $$b_{\rm E}= 2.81^{+0.24}_{-0.22}$$ at the median redshift of our sample, assuming the LoTSS Deep Fields redshift distribution is representative of our data. This reduces to $$b_{\rm C}= 2.02^{+0.17}_{-0.16}$$ and $$b_{\rm E}(z=0)= 1.67^{+0.12}_{-0.12}$$ when allowing preferential redshift distributions from the Deep Fields to model our data. Whilst the clustering amplitude is slightly lower than LoTSS-DR1 (≥2 mJy), our study benefits from larger samples and improved redshift estimates.
more »
« less
- Award ID(s):
- 2108402
- PAR ID:
- 10478337
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 527
- Issue:
- 3
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 6540-6568
- Size(s):
- p. 6540-6568
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Context.We study the flux density dependence of the redshift distribution of low-frequency radio sources observed in the LOFAR Two-metre Sky Survey (LoTSS) deep fields and apply it to estimate the clustering length of the large-scale structure of the Universe, examining flux density limited samples (1 mJy, 2 mJy, 4 mJy and 8 mJy) of LoTSS wide field radio sources. Methods.We utilise and combine the posterior probability distributions of photometric redshift determinations for LoTSS deep field observations from three different fields (Boötes, Lockman hole and ELAIS-N1, together about 26 square degrees of sky), which are available for between 91% to 96% of all sources above the studied flux density thresholds and observed in the area covered by multi-frequency data. We estimate uncertainties by a bootstrap method. We apply the inferred redshift distribution on the LoTSS wide area radio sources from the HETDEX field (LoTSS-DR1; about 424 square degrees) and make use of the Limber approximation and a power-law model of three dimensional clustering to measure the clustering length,r0, for various models of the evolution of clustering. Results.We find that the redshift distributions from all three LoTSS deep fields agree within expected uncertainties. We show that the radio source population probed by LoTSS at flux densities above 1 mJy has a median redshift of at least 0.9. At 2 mJy, we measure the clustering length of LoTSS radio sources to ber0 = (10.1 ± 2.6) h−1Mpc in the context of the comoving clustering model. Conclusions.Our findings are in agreement with measurements at higher flux density thresholds at the same frequency and with measurements at higher frequencies in the context of the comoving clustering model. Based on the inferred flux density limited redshift distribution of LoTSS deep field radio sources, the full wide area LoTSS will eventually cover an effective (source weighted) comoving volume of about 10 h−3Gpc3.more » « less
-
ABSTRACT We perform an analysis of two-point galaxy clustering and galaxy bias using Subaru Hyper-Suprime Cam (HSC) data taken jointly by the Subaru Strategic Program and the University of Hawaii in the Cosmic Evolution Survey (COSMOS) field over an area of 1.8 sq deg. The depth of the data is similar to the ongoing Hawaii Two-0 (H20) optical galaxy survey, thus the results are indicative of future constraints from tenfold area. We measure the angular autopower spectra of the galaxy overdensity in three redshift bins, defined by dropouts from the g, r, and i bands, and compare them to the theoretical expectation from concordance cosmology with linear galaxy bias. We determine the redshift distribution of each bin using a standard template-based photometric redshift method, coupled with a self-organizing map to quantify colour space coverage. We also investigate sources of systematic errors to inform the methodology and requirements for H20. The linear galaxy bias fit results are $$b_{\mathrm{gal,g}} = 3.90 \pm 0.33 (\mathrm{stat}) \substack{ +0.64 \\ -0.24 } (\mathrm{sys})$$ at redshift z ≃ 3.7, $$b_{\mathrm{gal,r}} = 8.44 \pm 0.63 (\mathrm{stat}) \substack{ +1.42 \\ -0.72 } (\mathrm{sys})$$ at z ≃ 4.7, and $$b_{\mathrm{gal,i}} = 11.94 \pm 2.24 (\mathrm{stat}) \substack{ +1.82 \\ -1.27 } (\mathrm{sys})$$ at z ≃ 5.9.more » « less
-
Aims. We combined the LOw-Frequency ARray (LOFAR) Two-metre Sky Survey (LoTSS) second data release (DR2) catalogue with gravitational lensing maps from the cosmic microwave background (CMB) to place constraints on the bias evolution of LoTSS-detected radio galaxies, and on the amplitude of matter perturbations. Methods. We constructed a flux-limited catalogue from LoTSS DR2, and analysed its harmonic-space cross-correlation with CMB lensing maps fromPlanck,Cℓgk, as well as its auto-correlation,Cℓgg. We explored the models describing the redshift evolution of the large-scale radio galaxy bias, discriminating between them through the combination of bothCℓgkandCℓgg. Fixing the bias evolution, we then used these data to place constraints on the amplitude of large-scale density fluctuations, parametrised byσ8. Results. We report the significance of theCℓgksignal at a level of 26.6σ. We determined that a linear bias evolution of the formbg(z) =bg,D/D(z), whereD(z) is the growth rate, is able to provide a good description of the data, and we measuredbg,D= 1.41 ± 0.06 for a sample that is flux limited at 1.5 mJy, for scalesℓ< 250 forCℓgg, andℓ< 500 forCℓgk. At the sample’s median redshift, we obtainedb(z= 0.82) = 2.34 ± 0.10. Usingσ8as a free parameter, while keeping other cosmological parameters fixed to thePlanckvalues, we found fluctuations of σ8= 0.75−0.04+0.05. The result is in agreement with weak lensing surveys, and at 1σdifference withPlanckCMB constraints. We also attempted to detect the late-time-integrated Sachs-Wolfe effect with LOFAR data; however, with the current sky coverage, the cross-correlation with CMB temperature maps is consistent with zero. Our results are an important step towards constraining cosmology with radio continuum surveys from LOFAR and other future large radio surveys.more » « less
-
H i constraints from the cross-correlation of eBOSS galaxies and Green Bank Telescope intensity mapsABSTRACT We present the joint analysis of Neutral Hydrogen (H i) Intensity Mapping observations with three galaxy samples: the Luminous Red Galaxy (LRG) and Emission Line Galaxy (ELG) samples from the eBOSS survey, and the WiggleZ Dark Energy Survey sample. The H i intensity maps are Green Bank Telescope observations of the redshifted $$21\rm cm$$ emission on $$100 \, {\rm deg}^2$$ covering the redshift range 0.6 < z < 1.0. We process the data by separating and removing the foregrounds present in the radio frequencies with FastI ICA. We verify the quality of the foreground separation with mock realizations, and construct a transfer function to correct for the effects of foreground removal on the H i signal. We cross-correlate the cleaned H i data with the galaxy samples and study the overall amplitude as well as the scale dependence of the power spectrum. We also qualitatively compare our findings with the predictions by a semianalytical galaxy evolution simulation. The cross-correlations constrain the quantity $$\Omega _{\rm {H\,\small {I}}} b_{\rm {H\,\small {I}}} r_{\rm {H\,\small {I}},{\rm opt}}$$ at an effective scale keff, where $$\Omega _\rm {H\,\small {I}}$$ is the H i density fraction, $$b_\rm {H\,\small {I}}$$ is the H i bias, and $$r_{\rm {H\,\small {I}},{\rm opt}}$$ the galaxy–hydrogen correlation coefficient, which is dependent on the H i content of the optical galaxy sample. At $$k_{\rm eff}=0.31 \, h\,{\rm Mpc^{-1}}$$ we find $$\Omega _{\rm {H\,\small {I}}} b_{\rm {H\,\small {I}}} r_{\rm {H\,\small {I}},{\rm Wig}} = [0.58 \pm 0.09 \, {\rm (stat) \pm 0.05 \, {\rm (sys)}}] \times 10^{-3}$$ for GBT-WiggleZ, $$\Omega _{\rm {H\,\small {I}}} b_{\rm {H\,\small {I}}} r_{\rm {H\,\small {I}},{\rm ELG}} = [0.40 \pm 0.09 \, {\rm (stat) \pm 0.04 \, {\rm (sys)}}] \times 10^{-3}$$ for GBT-ELG, and $$\Omega _{\rm {H\,\small {I}}} b_{\rm {H\,\small {I}}} r_{\rm {H\,\small {I}},{\rm LRG}} = [0.35 \pm 0.08 \, {\rm (stat) \pm 0.03 \, {\rm (sys)}}] \times 10^{-3}$$ for GBT-LRG, at z ≃ 0.8. We also report results at $$k_{\rm eff}=0.24$$ and $$k_{\rm eff}=0.48 \, h\,{\rm Mpc^{-1}}$$. With little information on H i parameters beyond our local Universe, these are amongst the most precise constraints on neutral hydrogen density fluctuations in an underexplored redshift range.more » « less
An official website of the United States government
