skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: OpenSoundscape: An open‐source bioacoustics analysis package for Python
Abstract Landscape‐scale bioacoustic projects have become a popular approach to biodiversity monitoring. Combining passive acoustic monitoring recordings and automated detection provides an effective means of monitoring sound‐producing species' occupancy and phenology and can lend insight into unobserved behaviours and patterns. The availability of low‐cost recording hardware has lowered barriers to large‐scale data collection, but technological barriers in data analysis remain a bottleneck for extracting biological insight from bioacoustic datasets.We provide a robust and open‐source Python toolkit for detecting and localizing biological sounds in acoustic data.OpenSoundscape provides access to automated acoustic detection, classification and localization methods through a simple and easy‐to‐use set of tools. Extensive documentation and tutorials provide step‐by‐step instructions and examples of end‐to‐end analysis of bioacoustic data. Here, we describe the functionality of this package and provide concise examples of bioacoustic analyses with OpenSoundscape.By providing an interface for bioacoustic data and methods, we hope this package will lead to increased adoption of bioacoustics methods and ultimately to enhanced insights for ecology and conservation.  more » « less
Award ID(s):
1935507 2120084
PAR ID:
10478415
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
British Ecological Society
Date Published:
Journal Name:
Methods in Ecology and Evolution
Volume:
14
Issue:
9
ISSN:
2041-210X
Page Range / eLocation ID:
2321 to 2328
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The biodiversity crisis necessitates spatially extensive methods to monitor multiple taxonomic groups for evidence of change in response to evolving environmental conditions. Programs that combine passive acoustic monitoring and machine learning are increasingly used to meet this need. These methods require large, annotated datasets, which are time‐consuming and expensive to produce, creating potential barriers to adoption in data‐ and funding‐poor regions. Recently released pre‐trained avian acoustic classification models provide opportunities to reduce the need for manual labelling and accelerate the development of new acoustic classification algorithms through transfer learning. Transfer learning is a strategy for developing algorithms under data scarcity that uses pre‐trained models from related tasks to adapt to new tasks.Our primary objective was to develop a transfer learning strategy using the feature embeddings of a pre‐trained avian classification model to train custom acoustic classification models in data‐scarce contexts. We used three annotated avian acoustic datasets to test whether transfer learning and soundscape simulation‐based data augmentation could substantially reduce the annotated training data necessary to develop performant custom acoustic classifiers. We also conducted a sensitivity analysis for hyperparameter choice and model architecture. We then assessed the generalizability of our strategy to increasingly novel non‐avian classification tasks.With as few as two training examples per class, our soundscape simulation data augmentation approach consistently yielded new classifiers with improved performance relative to the pre‐trained classification model and transfer learning classifiers trained with other augmentation approaches. Performance increases were evident for three avian test datasets, including single‐class and multi‐label contexts. We observed that the relative performance among our data augmentation approaches varied for the avian datasets and nearly converged for one dataset when we included more training examples.We demonstrate an efficient approach to developing new acoustic classifiers leveraging open‐source sound repositories and pre‐trained networks to reduce manual labelling. With very few examples, our soundscape simulation approach to data augmentation yielded classifiers with performance equivalent to those trained with many more examples, showing it is possible to reduce manual labelling while still achieving high‐performance classifiers and, in turn, expanding the potential for passive acoustic monitoring to address rising biodiversity monitoring needs. 
    more » « less
  2. Abstract Changes in land use and climate change threaten global biodiversity and ecosystems, calling for the urgent development of effective conservation strategies. Recognizing landscape heterogeneity, which refers to the variation in natural features within an area, is crucial for these strategies. While remote sensing images quantify landscape heterogeneity, they might fail to detect ecological patterns in moderately disturbed areas, particularly at minor spatial scales. This is partly because satellite imagery may not effectively capture undergrowth conditions due to its resolution constraints. In contrast, soundscape analysis, which studies environmental acoustic signals, emerges as a novel tool for understanding ecological patterns, providing reliable information on habitat conditions and landscape heterogeneity in complex environments across diverse scales and serving as a complement to remote sensing methods.We propose an unsupervised approach using passive acoustic monitoring data and network inference methods to analyse acoustic heterogeneity patterns based on biophony composition. This method uses sonotypes, unique acoustic entities characterized by their specific time‐frequency spaces, to establish the acoustic structure of a site through sonotype occurrences, focusing on general biophony rather than specific species and providing information on the acoustic footprint of a site. From a sonotype composition matrix, we use the Graphical Lasso method, a sparse Gaussian graphical model, to identify acoustic similarities across sites, map ecological complexity relationships through the nodes (sites) and edges (similarities), and transform acoustic data into a graphical representation of ecological interactions and landscape acoustic diversity.We implemented the proposed method across 17 sites within an oil palm plantation in Santander, Colombia. The resulting inferred graphs visualize the acoustic similarities among sites, reflecting the biophony achieved by characterizing the landscape through its acoustic structures. Correlating our findings with ecological metrics like the Bray–Curtis dissimilarity index and satellite imagery indices reveals significant insights into landscape heterogeneity.This unsupervised approach offers a new perspective on understanding ecological and biological interactions and advances soundscape analysis. The soundscape decomposition into sonotypes underscores the method's advantage, offering the possibility to associate sonotypes with species and identify their contribution to the similarity proposed by the graph. 
    more » « less
  3. Abstract Technological advances in three imaging techniques have opened the door to advanced morphological analyses and habitat mapping for biologists and ecologists.At the same time, the challenge of translating complex 3D data into meaningful metrics that can be used in conjunction with biological data currently hinders progress and accessibility.We introducehabtools, an R package that provides R functions to efficiently calculate complexity and shape metrics from DEMs, 3D meshes and 2D shapes as well as some helper functions to facilitate workflow.We expect the functionality ofhabtoolsto continue to expand as new metrics and faster methods become available, and we welcome new contributions and ideas. 
    more » « less
  4. Abstract Change‐point detection studies the problem of detecting the changes in the underlying distribution of the data stream as soon as possible after the change happens. Modern large‐scale, high‐dimensional, and complex streaming data call for computationally (memory) efficient sequential change‐point detection algorithms that are also statistically powerful. This gives rise to a computation versus statistical power trade‐off, an aspect less emphasized in the past in classic literature. This tutorial takes this new perspective and reviews several sequential change‐point detection procedures, ranging from classic sequential change‐point detection algorithms to more recent non‐parametric procedures that consider computation, memory efficiency, and model robustness in the algorithm design. Our survey also contains classic performance analysis, which provides useful techniques for analyzing new procedures. This article is categorized under:Statistical Models > Time Series ModelsAlgorithms and Computational Methods > AlgorithmsData: Types and Structure > Time Series, Stochastic Processes, and Functional Data 
    more » « less
  5. Abstract Significant advances in computational ethology have allowed the quantification of behaviour in unprecedented detail. Tracking animals in social groups, however, remains challenging as most existing methods can either capture pose or robustly retain individual identity over time but not both.To capture finely resolved behaviours while maintaining individual identity, we built NAPS (NAPS is ArUco Plus SLEAP), a hybrid tracking framework that combines state‐of‐the‐art, deep learning‐based methods for pose estimation (SLEAP) with unique markers for identity persistence (ArUco). We show that this framework allows the exploration of the social dynamics of the common eastern bumblebee (Bombus impatiens).We provide a stand‐alone Python package for implementing this framework along with detailed documentation to allow for easy utilization and expansion. We show that NAPS can scale to long timescale experiments at a high frame rate and that it enables the investigation of detailed behavioural variation within individuals in a group.Expanding the toolkit for capturing the constituent behaviours of social groups is essential for understanding the structure and dynamics of social networks. NAPS provides a key tool for capturing these behaviours and can provide critical data for understanding how individual variation influences collective dynamics. 
    more » « less