skip to main content


Title: Large-scale urban building function mapping by integrating multi-source web-based geospatial data
Morphological (e.g. shape, size, and height) and function (e.g. working, living, and shopping) information of buildings is highly needed for urban planning and management as well as other applications such as city-scale building energy use modeling. Due to the limited availability of socio-economic geospatial data, it is more challenging to map building functions than building morphological information, especially over large areas. In this study, we proposed an integrated framework to map building functions in 50 U.S. cities by integrating multi-source web-based geospatial data. First, a web crawler was developed to extract Points of Interest (POIs) from Tripadvisor.com, and a map crawler was developed to extract POIs and land use parcels from Google Maps. Second, an unsupervised machine learning algorithm named OneClassSVM was used to identify residential buildings based on landscape features derived from Microsoft building footprints. Third, the type ratio of POIs and the area ratio of land use parcels were used to identify six non-residential functions (i.e. hospital, hotel, school, shop, restaurant, and office). The accuracy assessment indicates that the proposed framework performed well, with an average overall accuracy of 94% and a kappa coefficient of 0.63. With the worldwide coverage of Google Maps and Tripadvisor.com, the proposed framework is transferable to other cities over the world. The data products generated from this study are of great use for quantitative city-scale urban studies, such as building energy use modeling at the single building level over large areas.  more » « less
Award ID(s):
1854502
PAR ID:
10478447
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Taylor & Francis Online
Date Published:
Journal Name:
Geo-spatial Information Science
ISSN:
1009-5020
Page Range / eLocation ID:
1 to 15
Subject(s) / Keyword(s):
Building functions, geospatial data, TripAdvisor, Google Static Maps
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The information of building types is highly needed for urban planning and management, especially in high resolution building modeling in which buildings are the basic spatial unit. However, in many parts of the world, this information is still missing. In this paper, we proposed a framework to derive the information of building type using geospatial data, including point-of-interest (POI) data, building footprints, land use polygons, and roads, from Gaode and Baidu Maps. First, we used natural language processing (NLP)-based approaches (i.e., text similarity measurement and topic modeling) to automatically reclassify POI categories into which can be used to directly infer building types. Second, based on the relationship between building footprints and POIs, we identified building types using two indicators of type ratio and area ratio. The proposed framework was tested using over 440,000 building footprints in Beijing, China. Our NLP-based approaches and building type identification methods show overall accuracies of 89.0% and 78.2%, and kappa coefficient of 0.83 and 0.71, respectively. The proposed framework is transferrable to other China cities for deriving the information of building types from web mapping platforms. The data products generated from this study are of great use for quantitative urban studies at the building level. 
    more » « less
  2. null (Ed.)
    Recent advances in big spatial data acquisition and deep learning allow novel algorithms that were not possible several years ago. We introduce a novel inverse procedural modeling algorithm for urban areas that addresses the problem of spatial data quality and uncertainty. Our method is fully automatic and produces a 3D approximation of an urban area given satellite imagery and global-scale data, including road network, population, and elevation data. By analyzing the values and the distribution of urban data, e.g., parcels, buildings, population, and elevation, we construct a procedural approximation of a city at a large-scale. Our approach has three main components: (1) procedural model generation to create parcel and building geometries, (2) parcel area estimation that trains neural networks to provide initial parcel sizes for a segmented satellite image of a city block, and (3) an optional optimization that can use partial knowledge of overall average building footprint area and building counts to improve results. We demonstrate and evaluate our approach on cities around the globe with widely different structures and automatically yield procedural models with up to 91,000 buildings, and spanning up to 150 km 2 . We obtain both a spatial arrangement of parcels and buildings similar to ground truth and a distribution of building sizes similar to ground truth, hence yielding a statistically similar synthetic urban space. We produce procedural models at multiple scales, and with less than 1% error in parcel and building areas in the best case as compared to ground truth and 5.8% error on average for tested cities. 
    more » « less
  3. The digitization of legacy infrastructure constitutes an important component of smart cities. While most cities worldwide possess digital maps of their transportation infrastructure, few have accurate digital information on their electric, natural gas, telecom, water, wastewater, and district heating and cooling systems. Digitizing data on legacy infrastructure systems comes with several challenges such as missing data, data conversion issues, data inconsistency, differences in the data format, spatio-temporal resolutions, structure, semantics and syntax, difficulty in providing controlled access to the datasets, and so on. Therefore, we introduce GUIDES, a new data conversion and management framework for urban infrastructure systems, which is comprised of big data analytics, efficient data management techniques, semantic web technologies, methods to ensure information security, and tools that aid visual analytics. The proposed framework facilitates: (i) mapping of urban infrastructure systems; (ii) integration of heterogeneous geospatial data; (iii) a secured way of storing, analyzing and querying data while preserving the semantics; (iv) qualitative and quantitative analysis over several spatio-temporal resolutions; and (v) visualization of static (e.g., land use) and dynamic (e.g., road traffic) information. 
    more » « less
  4. Abstract

    The accurate modeling of urban microclimate is a challenging task given the high surface heterogeneity of urban land cover and the vertical structure of street morphology. Recent years have witnessed significant efforts in numerical modeling and data collection of the urban environment. Nonetheless, it is difficult for the physical‐based models to fully utilize the high‐resolution data under the constraints of computing resources. The advancement in machine learning (ML) techniques offers the computational strength to handle the massive volume of data. In this study, we proposed a modeling framework that uses ML approach to estimate point‐scale street‐level air temperature from the urban‐resolving meso‐scale climate model and a suite of hyper‐resolution urban geospatial data sets, including three‐dimensional urban morphology, parcel‐level land use inventory, and weather observations from a sensor network. We implemented this approach in the City of Chicago as a case study to demonstrate the capability of the framework. The proposed approach vastly improves the resolution of temperature predictions in cities, which will help the city with walkability, drivability, and heat‐related behavioral studies. Moreover, we tested the model's reliability on out‐of‐sample locations to investigate the modeling uncertainties and the application potentials to the other areas. This study aims to gain insights into next‐gen urban climate modeling and guide the observation efforts in cities to build the strength for the holistic understanding of urban microclimate dynamics.

     
    more » « less
  5. Xu, Gang (Ed.)

    Recent advances in quantitative tools for examining urban morphology enable the development of morphometrics that can characterize the size, shape, and placement of buildings; the relationships between them; and their association with broader patterns of development. Although these methods have the potential to provide substantial insight into the ways in which neighborhood morphology shapes the socioeconomic and demographic characteristics of neighborhoods and communities, this question is largely unexplored. Using building footprints in five of the ten largest U.S. metropolitan areas (Atlanta, Boston, Chicago, Houston, and Los Angeles) and the open-source R package,foot, we examine how neighborhood morphology differs across U.S. metropolitan areas and across the urban-exurban landscape. Principal components analysis, unsupervised classification (K-means), and Ordinary Least Squares regression analysis are used to develop a morphological typology of neighborhoods and to examine its association with the spatial, socioeconomic, and demographic characteristics of census tracts. Our findings illustrate substantial variation in the morphology of neighborhoods, both across the five metropolitan areas as well as between central cities, suburbs, and the urban fringe within each metropolitan area. We identify five different types of neighborhoods indicative of different stages of development and distributed unevenly across the urban landscape: these include low-density neighborhoods on the urban fringe; mixed use and high-density residential areas in central cities; and uniform residential neighborhoods in suburban cities. Results from regression analysis illustrate that the prevalence of each of these forms is closely associated with variation in socioeconomic and demographic characteristics such as population density, the prevalence of multifamily housing, and income, race/ethnicity, homeownership, and commuting by car. We conclude by discussing the implications of our findings and suggesting avenues for future research on neighborhood morphology, including ways that it might provide insight into issues such as zoning and land use, housing policy, and residential segregation.

     
    more » « less