skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Soil carbon storage capacity of drylands under altered fire regimes
Abstract The determinants of fire-driven changes in soil organic carbon (SOC) across broad environmental gradients remains unclear, especially in global drylands. Here we combined datasets and field sampling of fire-manipulation experiments to evaluate where and why fire changes SOC and compared our statistical model to simulations from ecosystem models. Drier ecosystems experienced larger relative changes in SOC than humid ecosystems—in some cases exceeding losses from plant biomass pools—primarily explained by high fire-driven declines in tree biomass inputs in dry ecosystems. Many ecosystem models underestimated the SOC changes in drier ecosystems. Upscaling our statistical model predicted that soils in savannah–grassland regions may have gained 0.64 PgC due to net-declines in burned area over the past approximately two decades. Consequently, ongoing declines in fire frequencies have probably created an extensive carbon sink in the soils of global drylands that may have been underestimated by ecosystem models.  more » « less
Award ID(s):
1831944 2021898
PAR ID:
10478465
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Nature Climate Change
Volume:
13
Issue:
10
ISSN:
1758-678X
Page Range / eLocation ID:
1089 to 1094
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Drylands cover ca. 40% of the land surface and are hypothesised to play a major role in the global carbon cycle, controlling both long-term trends and interannual variation. These insights originate from land surface models (LSMs) that have not been extensively calibrated and evaluated for water-limited ecosystems. We need to learn more about dryland carbon dynamics, particularly as the transitory response and rapid turnover rates of semi-arid systems may limit their function as a carbon sink over multi-decadal scales. We quantified aboveground biomass carbon (AGC; inferred from SMOS L-band vegetation optical depth) and gross primary productivity (GPP; from PML-v2 inferred from MODIS observations) and tested their spatial and temporal correspondence with estimates from the TRENDY ensemble of LSMs. We found strong correspondence in GPP between LSMs and PML-v2 both in spatial patterns (Pearson’s r = 0.9 for TRENDY-mean) and in inter-annual variability, but not in trends. Conversely, for AGC we found lesser correspondence in space (Pearson’s r = 0.75 for TRENDY-mean, strong biases for individual models) and in the magnitude of inter-annual variability compared to satellite retrievals. These disagreements likely arise from limited representation of ecosystem responses to plant water availability, fire, and photodegradation that drive dryland carbon dynamics. We assessed inter-model agreement and drivers of long-term change in carbon stocks over centennial timescales. This analysis suggested that the simulated trend of increasing carbon stocks in drylands is in soils and primarily driven by increased productivity due to CO 2 enrichment. However, there is limited empirical evidence of this 50-year sink in dryland soils. Our findings highlight important uncertainties in simulations of dryland ecosystems by current LSMs, suggesting a need for continued model refinements and for greater caution when interpreting LSM estimates with regards to current and future carbon dynamics in drylands and by extension the global carbon cycle. 
    more » « less
  2. Woody plant encroachment of grassland ecosystems is a geographically extensive phenomenon that can lead to rapid land degradation and significantly alter global biogeochemical cycles, and this ecosystem change has been particularly well documented in the desert grassland of the southwestern United States. Fires are known to decrease vegetation cover and increase soil erodibility, and the shifts in wildfire regimes are currently occurring in Chihuahuan Desert. It is generally recognized that the invasion of woody vegetation into grasslands and savannas will increase the carbon stored in arid ecosystems. However, carbon storage may be complicated by disturbance such as wildfire, which alters the distribution and amount of C pools in the drylands. The relative distribution of each vegetation type to the soil C pool and its variability after fires are not well-understood in this ecosystem. This research will investigate the variations of SOC and its vegetation source partition at microsite scale in the woody shrub encroached grassland after the occurrence of fire, which will provide further information on wildfire’s influence on soil C pool dynamics in arid and semiarid lands. The post-fire changes of the spatial pattern of SOC and vegetation contributions in the shrub encroached grassland will be analyzed using a geostatistical method outlined in Guan et al. (2018). Overall, understanding the post-fire redistribution and sources of SOC may provide insights on the important role played by fire, aeolian processes and vegetation in the dynamics of desert grassland ecosystems. 
    more » « less
  3. ABSTRACT Water redistribution during rain events in drylands plays a critical role in the persistence and spatial pattern of vascular plants in these patchy ecosystems. Biological soil crusts (BSCs) form a membrane in the soil surface and mediate ecohydrological dynamics. However, little is known about their influence on dryland ecosystem state and spatial pattern under changing climate, which may alter total annual rainfall and intraannual rainfall regime. Building on existing models, we develop a model that considers BSC–vascular plant interactions and realistic ecohydrological dynamics under rainfall pulses. We find that the presence of BSCs often increases ecosystem resilience by promoting runoff to plants under high aridity. However, the benefit of BSCs comes at the cost of plant biomass under relatively wetter conditions; a threshold in BSC effect occurs when water losses from BSCs exceed the benefit by their surface water routing to plants. Increased resilience from BSCs, and their own persistence, can be promoted in finer soils and under rainfall regimes of less frequent events—projected for many drylands. Lastly, we find that BSCs alter feedbacks underlying plant spatial self‐organization and hence their formed patterns. In high aridity, BSCs likely ameliorate competition between plants through large scale runoff promotion, reducing plant spatial pattern regularity. Our analysis highlights that BSCs significantly shape drylands' response to climate change and their positive effects on resilience may be stronger and more pervasive in a drier future, but such benefits come at a cost of ecosystem biomass and productivity when aridity is outside a critical range. 
    more » « less
  4. null (Ed.)
    Drylands are a critical part of the earth system in terms of total area, socioeconomic and ecological importance. However, while drylands are known for their contribution to inter-annual atmospheric CO 2 variability, they are sometimes overlooked in discussions of global carbon stocks. Here, in preparation for the November 2021 UN Climate Change Conference (COP26), we review dryland systems with emphasis on their role in current and future carbon storage, response to climate change and potential to contribute to a carbon neutral future. Current estimates of carbon in dryland soils and vegetation suggest they are significant at global scale, containing approximately 30% of global carbon in above and below-ground biomass, and surface-layer soil carbon (top 30 cm). As ecosystems that are limited by water, the drylands are vulnerable to climate change. Climate change impacts are, however, dependent on future trends in rainfall that include both drying and wetting trends at regional scales. Regional rainfall trends will initiate trends in dryland productivity, vegetation structure and soil carbon storage. However, while management of fire and herbivory can contribute to increased carbon sequestration, impacts are dependent on locally unique ecosystem responses and climate-soil-plant interactions. Similarly, while community based agroforestry initiatives have been successful in some areas, large-scale afforestation programs are logistically infeasible and sometimes ecologically inappropriate at larger scales. As climate changes, top-down prescriptive measures designed to increase carbon storage should be avoided in favour of locally-adapted approaches that balance carbon management priorities with local livelihoods, ecosystem function, biodiversity and cultural, social and economic priorities. 
    more » « less
  5. Abstract Root production influences carbon and nutrient cycles and subsidizes soil biodiversity. However, the long‐term dynamics and drivers of belowground production are poorly understood for most ecosystems. In drylands, fire, eutrophication, and precipitation regimes could affect not only root production but also how roots track interannual variability in climate.We manipulated the intra‐annual precipitation regime, soil nitrogen, and fire in four common Chihuahuan Desert ecosystem types (three grasslands and one shrubland) in New Mexico, USA, where the 100‐year record indicates both long‐term drying and increasing interannual variability in aridity. First, we evaluated how root production tracked aridity over 10–17 years using climate sensitivity functions, which quantify long‐term, nonlinear relationships between biological processes and climate. Next, we determined the degree to which perturbations by fire, nitrogen addition or intra‐annual rainfall altered the sensitivity of root production to both mean and interannual variability in aridity.All ecosystems had nonlinear climate sensitivities that predicted declines in production with increases in the interannual variance of aridity. However, root production was the most sensitive to aridity in Chihuahuan Desert shrubland, with reduced production under drier and more variable aridity.Among the perturbations, only fire altered the sensitivity of root production to aridity. Root production was more than twice as sensitive to declines with aridity following prescribed fire than in unburned conditions. Neither the intra‐annual seasonal rainfall regime nor chronic nitrogen fertilization altered the sensitivity of roots to aridity.Synthesis. Our results yield new insight into how dryland plant roots respond to climate change. Our comparison of dryland ecosystems of the northern Chihuahuan Desert predicted that root production in shrublands would be more sensitive to future climates that are drier and more variable than root production in dry grasslands. Field manipulations revealed that fire could amplify the climate sensitivity of dry grassland root production, but in contrast, the climate sensitivity of root production was largely resistant to changes in the seasonal rainfall regime or increased soil fertilization. 
    more » « less