Abstract PremiseEndophytic plant‐microbe interactions range from mutualistic relationships that confer important ecological and agricultural traits to neutral or quasi‐parasitic relationships. In contrast to root‐associated endophytes, the role of environmental and host‐related factors in the acquisition of leaf endophyte communities at broad spatial and phylogenetic scales remains sparsely studied. We assessed endofoliar diversity to test the hypothesis that membership in these microbial communities is driven primarily by abiotic environment and host phylogeny. MethodsWe used a broad geographic coverage of North America in the genusHeucheraL. (Saxifragaceae), representing 32 species and varieties across 161 populations. Bacterial and fungal communities were characterized using 16S and ITS amplicon sequencing, respectively, and standard diversity metrics were calculated. We assembled environmental predictors for microbial diversity at collection sites, including latitude, elevation, temperature, precipitation, and soil parameters. ResultsAssembly patterns differed between bacterial and fungal endophytes. Host phylogeny was significantly associated with bacteria, while geographic distance was the best predictor of fungal community composition. Species richness and phylogenetic diversity were consistent across sites and species, with only fungi showing a response to aridity and precipitation for some metrics. Unlike what has been observed with root‐associated microbial communities, in this system microbes show no relationship with pH or other soil factors. ConclusionsOverall, this work improves our understanding of the large‐scale patterns of diversity and community composition in leaf endophytes and highlights the relative significance of environmental and host‐related factors in driving different microbial communities within the leaf microbiome.
more »
« less
Globally consistent response of plant microbiome diversity across hosts and continents to soil nutrients and herbivores
Abstract All multicellular organisms host a diverse microbiome composed of microbial pathogens, mutualists, and commensals, and changes in microbiome diversity or composition can alter host fitness and function. Nonetheless, we lack a general understanding of the drivers of microbiome diversity, in part because it is regulated by concurrent processes spanning scales from global to local. Global-scale environmental gradients can determine variation in microbiome diversity among sites, however an individual host’s microbiome also may reflect its local micro-environment. We fill this knowledge gap by experimentally manipulating two potential mediators of plant microbiome diversity (soil nutrient supply and herbivore density) at 23 grassland sites spanning global-scale gradients in soil nutrients, climate, and plant biomass. Here we show that leaf-scale microbiome diversity in unmanipulated plots depended on the total microbiome diversity at each site, which was highest at sites with high soil nutrients and plant biomass. We also found that experimentally adding soil nutrients and excluding herbivores produced concordant results across sites, increasing microbiome diversity by increasing plant biomass, which created a shaded microclimate. This demonstration of consistent responses of microbiome diversity across a wide range of host species and environmental conditions suggests the possibility of a general, predictive understanding of microbiome diversity.
more »
« less
- Award ID(s):
- 1831944
- PAR ID:
- 10478466
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Jones, Julia A (Ed.)Abstract Studies of community assembly often explore the role of niche selection in limiting the diversity of functional traits (underdispersion) or increasing the diversity of functional traits (overdispersion) within local communities. While these patterns have primarily been explored with morphological functional traits related to environmental tolerances and resource acquisition, plant metabolomics may provide an additional functional dimension of community assembly to expand our understanding of how niche selection changes along environmental gradients. Here, we examine how the functional diversity of leaf secondary metabolites and traditional morphological plant traits changes along local environmental gradients in three temperate forest ecosystems across North America. Specifically, we asked whether co‐occurring tree species exhibit local‐scale over‐ or underdispersion of metabolomic and morphological traits, and whether differences in trait dispersion among local communities are associated with environmental gradients of soil resources and topography. Across tree species, we find that most metabolomic traits are not correlated with morphological traits, adding a unique dimension to functional trait space. Within forest plots, metabolomic traits tended to be overdispersed while morphological traits tended to be underdispersed. Additionally, local environmental gradients had site‐specific effects on metabolomic and morphological trait dispersion patterns. Taken together, these results show that different suites of traits can result in contrasting patterns of functional diversity along environmental gradients and suggest that multiple community assembly mechanisms operate simultaneously to structure functional diversity in temperate forest ecosystems.more » « less
-
Ecosystems are experiencing changing global patterns of mean annual precipitation (MAP) and enrichment with multiple nutrients that potentially colimit plant biomass production. In grasslands, mean aboveground plant biomass is closely related to MAP, but how this relationship changes after enrichment with multiple nutrients remains unclear. We hypothesized the global biomass–MAP relationship becomes steeper with an increasing number of added nutrients, with increases in steepness corresponding to the form of interaction among added nutrients and with increased mediation by changes in plant community diversity. We measured aboveground plant biomass production and species diversity in 71 grasslands on six continents representing the global span of grassland MAP, diversity, management, and soils. We fertilized all sites with nitrogen, phosphorus, and potassium with micronutrients in all combinations to identify which nutrients limited biomass at each site. As hypothesized, fertilizing with one, two, or three nutrients progressively steepened the global biomass–MAP relationship. The magnitude of the increase in steepness corresponded to whether sites were not limited by nitrogen or phosphorus, were limited by either one, or were colimited by both in additive, or synergistic forms. Unexpectedly, we found only weak evidence for mediation of biomass–MAP relationships by plant community diversity because relationships of species richness, evenness, and beta diversity to MAP and to biomass were weak or opposing. Site-level properties including baseline biomass production, soils, and management explained little variation in biomass–MAP relationships. These findings reveal multiple nutrient colimitation as a defining feature of the global grassland biomass–MAP relationship.more » « less
-
Wiley (Ed.)Abstract Arbuscular mycorrhizal fungi (AMF) are widespread obligate symbionts of plants. This dynamic symbiosis plays a large role in successful plant performance, given that AMF help to ameliorate plant responses to abiotic and biotic stressors. Although the importance of this symbiosis is clear, less is known about what may be driving this symbiosis, the plant's need for nutrients or the excess of plant photosynthate being transferred to the AMF, information critical to assess the functionality of this relationship. Characterizing the AMF community along a natural plant productivity gradient is a first step in understanding how this symbiosis may vary across the landscape. We surveyed the AMF community diversity at 12 sites along a plant productivity gradient driven by soil nitrogen availability. We found that AMF diversity in soil environmental DNA significantly increased along with the growth of the host plantsAcerrubrumandA. saccharum., a widespread tree genus. These increases also coincided with a natural soil inorganic N availability gradient. We hypothesize photosynthate from the increased tree growth is being allocated to the belowground AMF community, leading to an increase in diversity. These findings contribute to understanding this complex symbiosis through the lens of AMF turnover and suggest that a more diverse AMF community is associated with increased host–plant performance.more » « less
-
Abstract Forests harbor extensive biodiversity and act as a strong global carbon and nitrogen sink. Although enhancing tree diversity has been shown to mitigate climate change by sequestering more carbon and nitrogen in biomass and soils in manipulative experiments, it is still unknown how varying environmental gradients, such as gradients in resource availability, mediate the effects of tree diversity on carbon and nitrogen accrual in natural forests. Here, we use Canada’s National Forest Inventory data to explore how the relationships between tree diversity and the accumulation of carbon and nitrogen in tree biomass and soils vary with resource availability and environmental stressors in natural forests. We find that the positive relationship between tree functional diversity (rather than species richness) and the accumulation of carbon in tree biomass strengthens with increasing light and soil nutrient availability. Moreover, the positive relationship between tree functional diversity and the accumulation of carbon and nitrogen in both organic and mineral soil horizons is more pronounced at sites with greater water and nutrient availabilities. Our results highlight that conserving and promoting functionally diverse forests in resource-rich environments could play a greater role than in resource-poor environments in enhancing carbon and nitrogen sequestration in Canada’s forests.more » « less
An official website of the United States government

