skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Advances in sensor developments for cell culture monitoring
Abstract Cell culture encompasses procedures for extracting cells from their natural tissue and cultivating them under controlled artificial conditions. During this process, various factors, including cell physiological/morphological properties, culture environments, metabolites, and contaminants, have to be precisely controlled and monitored for the survival of cells and the pursuit of the desired properties of the cells. This review summarizes recent advances in sensor technologies and manufacturing strategies for various cell culture platforms using traditional plastics, microfluidic chips, and scalable bioreactors. We share the details of newly developed biological sensors, chemical sensors, optical sensors, electronic chip technologies, and material integration methods. The precise control of parameters based on the feedback by these sensors and electronics enhances cell culture quality and throughput.  more » « less
Award ID(s):
1648035
PAR ID:
10478529
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
BMEMat
Volume:
1
Issue:
4
ISSN:
2751-7438
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Stimuli–responsive biomaterials may be used to better control the release of bioactive molecules or cells for applications involving drug delivery and controlled cell release. In this study, we developed a Factor Xa (FXa)‐responsive biomaterial capable of controlled release of pharmaceutical agents and cells from in vitro culture. FXa‐cleavable substrates were formed as hydrogels that degraded in response to FXa enzyme over several hours. Hydrogels were shown to release both heparin and a model protein in response to FXa. Additionally, RGD‐functionalized FXa‐degradable hydrogels were used to culture mesenchymal stromal cells (MSCs), enabling FXa‐mediated cell dissociation from hydrogels in a manner that preserved multicellular structures. Harvesting MSCs using FXa‐mediated dissociation did not influence their differentiation capacity or indoleamine 2,3‐dioxygenase (IDO) activity (a measure of immunomodulatory capacity). In all, this FXa‐degradable hydrogel is a novel responsive biomaterial system that may be used for on‐demand drug delivery, as well as for improving processes for in vitro culture of therapeutic cells. 
    more » « less
  2. Abstract The kidney tubule consists of a single layer of epithelial cells supported by the tubular basement membrane (TBM), a thin layer of specialized extracellular matrix (ECM). The mechanical properties of the ECM are important for regulating a wide range of cell functions including proliferation, differentiation and cell survival. Increased ECM stiffness plays a role in promoting multiple pathological conditions including cancer, fibrosis and heart disease. How changes in TBM mechanics regulate tubular epithelial cell behavior is not fully understood. Here we introduce a cell culture system that utilizes in vivo-derived TBM to investigate cell–matrix interactions in kidney proximal tubule cells. Basement membrane mechanics was controlled using genipin, a biocompatibility crosslinker. Genipin modification resulted in a dose-dependent increase in matrix stiffness. Crosslinking had a marginal but statistically significant impact on the diffusive molecular transport properties of the TBM, likely due to a reduction in pore size. Both native and genipin-modified TBM substrates supported tubular epithelial cell growth. Cells were able to attach and proliferate to form confluent monolayers. Tubular epithelial cells polarized and assembled organized cell–cell junctions. Genipin modification had minimal impact on cell viability and proliferation. Genipin stiffened TBM increased gene expression of pro-fibrotic cytokines and altered gene expression for N-cadherin, a proximal tubular epithelial specific cell–cell junction marker. This work introduces a new cell culture model for cell-basement membrane mechanobiology studies that utilizes in vivo-derived basement membrane. We also demonstrate that TBM stiffening affects tubular epithelial cell function through altered gene expression of cell-specific differentiation markers and induced increased expression of pro-fibrotic growth factors. 
    more » « less
  3. Abstract In oxygen (O2)‐controlled cell culture, an indispensable tool in biological research, it is presumed that the incubator setpoint equals the O2tension experienced by cells (i.e., pericellular O2). However, it is discovered that physioxic (5% O2) and hypoxic (1% O2) setpoints regularly induce anoxic (0% O2) pericellular tensions in both adherent and suspension cell cultures. Electron transport chain inhibition ablates this effect, indicating that cellular O2consumption is the driving factor. RNA‐seq analysis revealed that primary human hepatocytes cultured in physioxia experience ischemia‐reperfusion injury due to cellular O2consumption. A reaction‐diffusion model is developed to predict pericellular O2tension a priori, demonstrating that the effect of cellular O2consumption has the greatest impact in smaller volume culture vessels. By controlling pericellular O2tension in cell culture, it is found that hypoxia vs. anoxia induce distinct breast cancer transcriptomic and translational responses, including modulation of the hypoxia‐inducible factor (HIF) pathway and metabolic reprogramming. Collectively, these findings indicate that breast cancer cells respond non‐monotonically to low O2, suggesting that anoxic cell culture is not suitable for modeling hypoxia. Furthermore, it is shown that controlling atmospheric O2tension in cell culture incubators is insufficient to regulate O2in cell culture, thus introducing the concept of pericellular O2‐controlled cell culture. 
    more » « less
  4. Magnetoelastic sensors, which undergo mechanical resonance when interrogated with magnetic fields, can be functionalized to measure various physical quantities and chemical/biological analytes by tracking their resonance behaviors. The unique wireless and functionalizable nature of these sensors makes them good candidates for biological sensing applications, from the detection of specific bacteria to tracking force loading inside the human body. In this study, we evaluate the viability of magnetoelastic sensors based on a commercially available magnetoelastic material (Metglas 2826 MB) for wirelessly monitoring the attachment and growth of human mesenchymal stromal cells (hMSCs) in 2D in vitro cell culture. The results indicate that the changes in sensor resonance are linearly correlated with cell quantity. Experiments using a custom-built monitoring system also demonstrated the ability of this technology to collect temporal profiles of cell growth, which could elucidate key stages of cell proliferation based on acute features in the profile. Additionally, there was no observed change in the morphology of cells after they were subjected to magnetic and mechanical stimuli from the monitoring system, indicating that this method for tracking cell growth may have minimal impact on cell quality and potency. 
    more » « less
  5. Abstract Extracellular vesicles (EVs) are implicated as promising therapeutics and drug delivery vehicles in various diseases. However, successful clinical translation will depend on the development of scalable biomanufacturing approaches, especially due to the documented low levels of intrinsic EV‐associated cargo that may necessitate repeated doses to achieve clinical benefit in certain applications. Thus, here the effects of a 3D‐printed scaffold‐perfusion bioreactor system are assessed on the production and bioactivity of EVs secreted from bone marrow‐derived mesenchymal stem cells (MSCs), a cell type widely implicated in generating EVs with therapeutic potential. The results indicate that perfusion bioreactor culture induces an ≈40‐80‐fold increase (depending on measurement method) in MSC EV production compared to conventional cell culture. Additionally, MSC EVs generated using the perfusion bioreactor system significantly improve wound healing in a diabetic mouse model, with increased CD31+staining in wound bed tissue compared to animals treated with flask cell culture‐generated MSC EVs. Overall, this study establishes a promising solution to a major EV translational bottleneck, with the capacity for tunability for specific applications and general improvement alongside advancements in 3D‐printing technologies. 
    more » « less