skip to main content


This content will become publicly available on December 3, 2024

Title: Review on 3D Printing of Bioinspired Structures for Surface/Interface Applications
Abstract

Natural organisms have evolved a series of versatile functional biomaterials and structures to cope with survival crises in their living environment, exhibiting outstanding properties such as superhydrophobicity, anisotropy, and mechanical reinforcement, which have provided abundant inspiration for the design and fabrication of next‐generation multi‐functional devices. However, the lack of available materials and limitations of traditional manufacturing methods for complex multiscale structures have hindered the progress in bio‐inspired manufacturing of functional structures. As a revolutionary emerging manufacturing technology, additive manufacturing (i.e., 3D printing) offers high design flexibility and manufacturing freedom, providing the potential for the fabrication of intricate, multiscale, hierarchical, and multi‐material structures. Herein, a comprehensive review of current 3D printing of surface/interface structures, covering the applied materials, designs, and functional applications is provided. Several bio‐inspired surface structures that have been created using 3D printing technology are highlighted and categorized based on their specific properties and applications, some properties can be applied to multiple applications. The optimized designs of these 3D‐printed bio‐inspired surfaces offer a promising prospect of low‐cost, high efficiency, and excellent performance. Finally, challenges and opportunities in field of fabricating functional surface/interface with more versatile functional material, refined structural design, and better cost‐effective are discussed.

 
more » « less
NSF-PAR ID:
10478607
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nature provides us with a large number of functional material systems consisting of hierarchical structures, where significant variations in dimensions are present. Such hierarchical structures are difficult to build by traditional manufacturing processes due to manufacturing limitations. Nowadays, three-dimensional (3D) objects with complex structures can be built by gradually accumulating in a layer-based additive manufacturing (AM); however, the hierarchical structure measured from macroscale to nanoscale sizes still raises significant challenges to the AM processes, whose manufacturing capability is intrinsically specified within a certain scope. It is desired to develop a multiscale AM process to narrow this gap between scales of feature in hierarchical structures. This research aims to investigate an integration approach to fabricating hierarchical objects that have macro-, micro-, and nano-scales features in an object. Firstly, the process setup and the integrated process of two-photon polymerization (TPP), immersed surface accumulation (ISA), and mask image projection-based stereolithography (MIP-SL) were introduced to address the multiscale fabrication challenge. Then, special hierarchical design and process planning toward integrating multiple printing processes are demonstrated. Lastly, we present two test cases built by our hierarchical printing method to validate the feasibility and efficiency of the proposed multiscale hierarchical printing approach. The results demonstrated the capability of the developed multiscale 3D printing process and showed its future potential in various novel applications, such as optics, microfluidics, cell culture, as well as interface technology. 
    more » « less
  2. Abstract

    Nature has developed high‐performance materials and structures over millions of years of evolution and provides valuable sources of inspiration for the design of next‐generation structural materials, given the variety of excellent mechanical, hydrodynamic, optical, and electrical properties. Biomimicry, by learning from nature's concepts and design principles, is driving a paradigm shift in modern materials science and technology. However, the complicated structural architectures in nature far exceed the capability of traditional design and fabrication technologies, which hinders the progress of biomimetic study and its usage in engineering systems. Additive manufacturing (three‐dimensional (3D) printing) has created new opportunities for manipulating and mimicking the intrinsically multiscale, multimaterial, and multifunctional structures in nature. Here, an overview of recent developments in 3D printing of biomimetic reinforced mechanics, shape changing, and hydrodynamic structures, as well as optical and electrical devices is provided. The inspirations are from various creatures such as nacre, lobster claw, pine cone, flowers, octopus, butterfly wing, fly eye, etc., and various 3D‐printing technologies are discussed. Future opportunities for the development of biomimetic 3D‐printing technology to fabricate next‐generation functional materials and structures in mechanical, electrical, optical, and biomedical engineering are also outlined.

     
    more » « less
  3. null (Ed.)
    Emulating the unique combination of structural, compositional, and functional gradation in natural materials is exceptionally challenging. Many natural structures have proved too complex or expensive to imitate using traditional processing techniques despite recent advances. Recent innovations within the field of additive manufacturing (AM) or 3D Printing (3DP) have shown the ability to create structures that have variations in material composition, structure, and performance, providing a new design-for-manufacturing platform for the imitation of natural materials. AM or 3DP techniques are capable of manufacturing structures that have significantly improved properties and functionality over what could be traditionally-produced, giving manufacturers an edge in their ability to realize components for highly-specialized applications in different industries. To this end, the present work reviews fundamental advances in the use of naturally-inspired design enabled through 3DP / AM, how these techniques can be further exploited to reach new application areas and the challenges that lie ahead for widespread implementation. An example of how these techniques can be applied towards a total hip arthroplasty application is provided to spur further innovation in this area. 
    more » « less
  4. Abstract

    Direct write Inkjet Printing is a versatile additive manufacturing technology that allows for the fabrication of multiscale structures with dimensions spanning from nano to cm scale. This is made possible due to the development of novel dispensing tools, enabling controlled and precise deposition of fluid with a wide range of viscosities (1 – 50 000 mPas) in nanoliter volumes. As a result, Inkjet printing has been recognized as a potential low-cost alternative for several established manufacturing methods, including cleanroom fabrication. In this paper, we present a characterization study of PEDOT: PSS polymer ink deposition printing process realized with the help of an automated, custom Direct Write Inkjet system. PEDOT: PSS is a highly conductive ink that possesses good film forming capabilities. Applications thus include printing thin films on flexible substrates for tactile (touch) sensors. We applied the Taguchi Design of Experiment (DOE) method to produce the optimal set of PEDOT:PSS ink dispensing parameters, to study their influence on the resulting ink droplet diameter. We experimentally determined that the desired outcome of a printed thin film with minimum thickness is directly related to 1) the minimum volume of dispensed fluid and 2) the presence of a preprocessing step, namely air plasma treatment of the Kapton substrate. Results show that an ink deposit with a minimum diameter of 482 μm, and a thin film with approximately 300 nm thickness were produced with good repeatability.

     
    more » « less
  5. Direct write Inkjet Printing is a versatile additive manufacturing technology that allows for the fabrication of multiscale structures with dimensions spanning from nano to cm scale. This is made possible due to the development of novel dispensing tools, enabling controlled and precise deposition of fluid with a wide range of viscosities (1 – 50 000 mPas) in nano-liter volumes. As a result, Inkjet printing has been recognized as a potential low-cost alternative for several established manufacturing methods, including cleanroom fabrication. In this paper, we present a characterization study of PEDOT: PSS polymer ink deposition printing process realized with the help of an automated, custom Direct Write Inkjet system. PEDOT: PSS is a highly conductive ink that possesses good film forming capabilities. Applications thus include printing thin films on flexible substrates for tactile (touch) sensors. We applied the Taguchi Design of Experiment (DOE) method to produce the optimal set of PEDOT:PSS ink dispensing parameters, to study their influence on the resulting ink droplet diameter. We experimentally determined that the desired outcome of a printed thin film with minimum thickness is directly related to 1) the minimum volume of dispensed fluid and 2) the presence of a preprocessing step, namely air plasma treatment of the Kapton substrate. Results show that an ink deposit with a minimum diameter of 482 μm, and a thin film with approximately 300 nm thickness were produced with good repeatability. 
    more » « less