skip to main content

This content will become publicly available on November 2, 2024

Title: Heterogeneous landscape promotes distinct microbial communities in an imperiled scrub ecosystem
Habitat heterogeneity is a key driver of biodiversity of macroorganisms, yet how heterogeneity structures belowground microbial communities is not well understood. Importantly, belowground microbial communities may respond to any number of abiotic, biotic, and spatial drivers found in heterogeneous environments. Here, we examine potential drivers of prokaryotic and fungal communities in soils across the heterogenous landscape of the imperiled Florida scrub, a pyrogenic ecosystem where slight differences in elevation lead to large changes in water and nutrient availability and vegetation composition. We employ a comprehensive, large-scale sampling design to characterize the communities of prokaryotes and fungi associated with three habitat types and two soil depths (crust and subterranean) to evaluate (i) differences in microbial communities across these heterogeneous habitats, (ii) the relative roles of abiotic, biotic, and spatial drivers in shaping community structure, and (iii) the distribution of fungal guilds across these habitats. We sequenced soils from 40 complete replicates of habitat × soil depth combinations and sequenced the prokaryotic 16S and fungal internal transcribed spacer (ITS) regions using Illumina MiSeq. Habitat heterogeneity generated distinct communities of soil prokaryotes and fungi. Spatial distance played a role in structuring crust communities, whereas subterranean microbial communities were primarily structured by the shrub community, whose roots they presumably interacted with. This result helps to explain the unexpected transition we observed between arbuscular mycorrhiza–dominated soils at low-elevation habitats to ectomycorrhiza-dominated soils at high-elevation habitats. Our results challenge previous notions of environmental determinism of microbial communities and generate new hypotheses regarding symbiotic relationships across heterogeneous environments.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Taylor and Francis
Date Published:
Journal Name:
Page Range / eLocation ID:
739 to 748
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Peatlands play an important role in global biogeochemical cycles and are essential for multiple ecosystem functions. Understanding the environmental drivers of microbial functioning and community structure can provide insights to enable effective and evidence‐based management. However, it remains largely unknown how microbial diversity contributes to the functioning of belowground processes. Addressing this gap in knowledge will provide a better understanding of microbial‐mediated processes in peatlands that are undergoing restoration or reclamation. This study assessed the changes in microbial community diversity and structure as well as soil function by measuring microbial respiration on a range of substrates from three natural fen types found in the Athabasca Oil Sands region of Alberta, Canada (a poor fen, a hypersaline fen, and a tree‐rich fen) and a nearby constructed fen undergoing reclamation following open pit mining. Overall, substrate induced respiration was significantly higher in the constructed fen. Alpha diversity of fungi and prokaryotes was highest in the tree‐rich fen, and the composition of microbial communities was significantly different between fens. Both fungal and prokaryotic communities were strongly related to pore water pH and temperature, with plant richness also contributing to the shape of fungal communities. In summary, microbial community structure reflects the underlying differences in soil condition across different fens but plays essential roles in the ecological functions of soil. These findings provide a new outlook for the management of peatlands undergoing post‐mining reclamation. Future research on peatland reclamation should consider the dynamic interaction between communities and ecosystem functionality, for which this study forms a useful baseline.

    more » « less
  2. Introduction Damming has substantially fragmented and altered riverine ecosystems worldwide. Dams slow down streamflows, raise stream and groundwater levels, create anoxic or hypoxic hyporheic and riparian environments and result in deposition of fine sediments above dams. These sediments represent a good opportunity to study human legacies altering soil environments, for which we lack knowledge on microbial structure, depth distribution, and ecological function. Methods Here, we compared high throughput sequencing of bacterial/ archaeal and fungal community structure (diversity and composition) and functional genes (i.e., nitrification and denitrification) at different depths (ranging from 0 to 4 m) in riparian sediments above breached and existing milldams in the Mid-Atlantic United States. Results We found significant location- and depth-dependent changes in microbial community structure. Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Chloroflexi, Acidobacteria, Planctomycetes, Thaumarchaeota, and Verrucomicrobia were the major prokaryotic components while Ascomycota, Basidiomycota, Chytridiomycota, Mortierellomycota, Mucoromycota, and Rozellomycota dominated fungal sequences retrieved from sediment samples. Ammonia oxidizing genes ( amo A for AOA) were higher at the sediment surface but decreased sharply with depth. Besides top layers, denitrifying genes ( nos Z) were also present at depth, indicating a higher denitrification potential in the deeper layers. However, these results contrasted with in situ denitrification enzyme assay (DEA) measurements, suggesting the presence of dormant microbes and/or other nitrogen processes in deep sediments that compete with denitrification. In addition to enhanced depth stratification, our results also highlighted that dam removal increased species richness, microbial diversity, and nitrification. Discussion Lateral and vertical spatial distributions of soil microbiomes (both prokaryotes and fungi) suggest that not only sediment stratification but also concurrent watershed conditions are important in explaining the depth profiles of microbial communities and functional genes in dammed rivers. The results also provide valuable information and guidance to stakeholders and restoration projects. 
    more » « less
  3. null (Ed.)
    Herbivory can have strong impacts on greenhouse gas fluxes in high-latitude ecosystems. For example, in the Yukon-Kuskokwim (Y-K) Delta in western Alaska, migratory goose grazing affects the magnitude of soil carbon dioxide (CO2) and methane (CH4) fluxes. However, the underlying drivers of this relationship are unclear, as few studies systematically tease apart the processes by which herbivores influences soil biogeochemistry. To examine these mechanisms in detail, we conducted a laboratory incubation experiment to quantify changes in greenhouse gas fluxes in response to three parameters altered by herbivores in situ: temperature, soil moisture content, and nutrient inputs. These treatments were applied to soils collected in grazing lawns and nearby ungrazed habitat, allowing us to assess how variation in microbial community structure influenced observed responses. We found pronounced differences in both fungal and prokaryotic community composition between grazed and ungrazed areas. In the laboratory incubation experiment, CO2 and CH4 fluxes increased with temperature, soil moisture, and goose fecal addition, suggesting that grazing-related changes in the soil abiotic environment may enhance soil C losses. Yet, these abiotic drivers were insufficient to explain variation in fluxes between soils with and without prior grazing. Differences in trace gas fluxes between grazed and ungrazed areas may result both from herbivore-induced shifts in abiotic parameters and grazing-related alterations in microbial community structure. Our findings suggest that relationships among herbivores and soil microbial communities could mediate carbon-climate feedbacks in rapidly changing high-latitude ecosystems. 
    more » « less
  4. Abstract

    Global climate and land use change are causing woody plant encroachment in arctic, alpine, and arid/semi‐arid ecosystems around the world, yet our understanding of the belowground impacts of this phenomenon is limited. We conducted a globally distributed field study of 13 alpine sites across four continents undergoing woody plant encroachment and sampled soils from both woody encroached and nearby herbaceous plant community types. We found that woody plant encroachment influenced soil microbial richness and community composition across sites based on multiple factors including woody plant traits, site level climate, and abiotic soil conditions. In particular, root symbiont type was a key determinant of belowground effects, as Nitrogen‐fixing woody plants had higher soil fungal richness, while Ecto/Ericoid mycorrhizal species had higher soil bacterial richness and symbiont types had distinct soil microbial community composition. Woody plant leaf traits indirectly influenced soil microbes through their impact on soil abiotic conditions, primarily soil pH and C:N ratios. Finally, site‐level climate affected the overall magnitude and direction of woody plant influence, as soil fungal and bacterial richness were either higher or lower in woody encroached versus herbaceous soils depending on mean annual temperature and precipitation. All together, these results document global impacts of woody plant encroachment on soil microbial communities, but highlight that multiple biotic and abiotic pathways must be considered to scale up globally from site‐ and species‐level patterns. Considering both the aboveground and belowground effects of woody encroachment will be critical to predict future changes in alpine ecosystem structure and function and subsequent feedbacks to the global climate system.

    more » « less
  5. Abstract

    Understanding how terrestrial biotic communities have responded to glacial recession since the Last Glacial Maximum (LGM) can inform present and future responses of biota to climate change. In Antarctica, the Transantarctic Mountains (TAM) have experienced massive environmental changes associated with glacial retreat since the LGM, yet we have few clues as to how its soil invertebrate‐dominated animal communities have responded. Here, we surveyed soil invertebrate fauna from above and below proposed LGM elevations along transects located at 12 features across the Shackleton Glacier region. Our transects captured gradients of surface ages possibly up to 4.5 million years and the soils have been free from human disturbance for their entire history. Our data support the hypothesis that soils exposed during the LGM are now less suitable habitats for invertebrates than those that have been exposed by deglaciation following the LGM. Our results show that faunal abundance, community composition, and diversity were all strongly affected by climate‐driven changes since the LGM. Soils more recently exposed by the glacial recession (as indicated by distances from present ice surfaces) had higher faunal abundances and species richness than older exposed soils. Higher abundances of the dominant nematodeScottnemawere found in older exposed soils, whileEudorylaimus,Plectus, tardigrades, and rotifers preferentially occurred in more recently exposed soils. Approximately 30% of the soils from which invertebrates could be extracted had onlyScottnema, and these single‐taxon communities occurred more frequently in soils exposed for longer periods of time. Our structural equation modeling of abiotic drivers highlighted soil salinity as a key mediator ofScottnemaresponses to soil exposure age. These changes in soil habitat suitability and biotic communities since the LGM indicate that Antarctic terrestrial biodiversity throughout the TAM will be highly altered by climate warming.

    more » « less