skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optomagneto control of singlet fission charge multiplication dynamics in single organic semiconductor crystals
Over a 0-7 T range, transient absorption microscopy on anthradithiophene organic crystals shows that singlet to triplet pair state conversion is anticorrelated with fluorescence yield. This shows how the dominant singlet fission charge multiplication pathway can be switched-off with increasing B-field or by changing the molecular packing motifs.  more » « less
Award ID(s):
1920368
PAR ID:
10478633
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Optica Publishing Group
Date Published:
ISBN:
978-1-957171-25-8
Page Range / eLocation ID:
FF2G.4
Format(s):
Medium: X
Location:
San Jose, CA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The functionalization of polycyclic aromatic hydrocarbons (PAHs) via B←N Lewis pair formation offers an opportunity to judiciously fine‐tune the structural features and optoelectronic properties, to suit the demands of applications in organic electronic devices, bioimaging, and as sensitizers for singlet oxygen generation. We demonstrate that the N‐directed electrophilic borylation of 2,6‐di(pyrid‐2‐yl)anthracene offers access to linearly extended acene derivativesPy‐BR(R=Et, Ph, C6F5). In comparison to indeno‐fused 9,10‐diphenylanthracene, the formal “BN for CC” replacement inPy‐BRselectively lowers the LUMO, resulting in a much reduced HOMO–LUMO gap. An even more extended conjugated system with seven six‐membered rings in a row (Qu‐BEt) is obtained by borylation of 2,6‐di(quinolin‐8‐yl)anthracene. FluorinatedPy‐BPfshows particularly advantageous properties, including relatively lower‐lying HOMO and LUMO levels, strong yellow‐green fluorescence, and effective singlet oxygen sensitization, while resisting self‐sensitized conversion to its endoperoxide. 
    more » « less
  2. 31 P NMR spectroscopy and the study of nuclear spin singlet relaxation phenomena are of interest in particular due to the importance of phosphorus-containing compounds in physiology. We report the generation and measurement of relaxation of 31 P singlet order in a chemically equivalent but magnetically inequivalent case. Nuclear magnetic resonance singlet state lifetimes of 31 P pairs have heretofore not been reported. Couplings between 1 H and 31 P nuclei lead to magnetic inequivalence and serve as a mechanism of singlet state population conversion within this molecule. We show that in this molecule singlet relaxation occurs at a rate significantly faster than spin–lattice relaxation, and that anticorrelated chemical shift anisotropy can account for this observation. Calculations of this mechanism, with the help of molecular dynamics simulations and ab initio calculations, provide excellent agreement with the experimental findings. This study could provide guidance for the study of 31 P singlets within other compounds, including biomolecules. 
    more » « less
  3. ABSTRACT The energies and geometries of the lowest lying singlet and triplet states of the four diradicals formed by removing two H atoms from thiophene have been characterized. We utilized the highly correlated, multireference methods configuration interaction with single and double excitations with and without the Pople correction for size‐extensivity (MR‐CISD+Q and MR‐CISD) and averaged quadratic coupled cluster theory (MR‐AQCC). CAS (8,7) and CAS (10,8) active spaces involving σ, σ*, π, and π* orbitals were employed along with the cc‐pVDZ and cc‐pVTZ basis sets. The larger active space included the two electrons in the nonbonding sp2hybrid orbital on sulfur. We find that all didehydro isomers exist as planar, stable ground state singlets. The singlet‐triplet (S‐T) adiabatic gaps range from 15 to 25 kcal/mol while the vertical splittings are 21–35 kcal/mol. The 2,3 isomer has the lowest absolute ground state singlet energy and the largest adiabatic and vertical S‐T splitting. The ground states of the 2,3‐, and 2,5‐didehydrothiophene isomers are predicted to exhibit the smallest and largest diradical character, respectively, based on their electronic structures, spin densities and bonding analysis. To our knowledge, no experimental excitation energies of any of the didehydrothiophene isomers are available, and our computed MR‐AQCC/cc‐pVTZ data are believed to be among the most accurate computed results. This extensive study shows a competitive performance between MR‐AQCC and MR‐CISD+Q. 
    more » « less
  4. We report high-level electronic structure calculations of electronic states in the miniSOG (for mini Singlet Oxygen Generator) photoactive protein designed to produce singlet oxygen upon light exposure. We consider a model system with a riboflavin (RF) chromophore. To better understand the photosensitization process, we compute relevant electronic states of the combined oxygen-chromophore system and their couplings. The calculations suggest that singlet oxygen can be produced both by inter-system crossing, via a triplet state of the RF(T1)×O2(3Σ− g ) character as well as by triplet excitation energy transfer via a singlet state of the same character. Importantly, the former channel produces O2(1Σ+ g ), an excited state of singlet oxygen, which is known to convert with unit efficiency into O2(1∆g) The calculations also provide evidence for the production of the triplet state of the chromophore via internal conversion facilitated by oxygen. Our results provide concrete support to previously hypothesized scenarios. 
    more » « less
  5. Tyrosine residues act as intermediates in proton coupled electron transfer reactions (PCET) in proteins. For example, in ribonucleotide reductase (RNR), a tyrosyl radical oxidizes an active site cysteine via a 35 Å pathway that contains multiple aromatic groups. When singlet tyrosine is oxidized, the radical becomes a strong acid, and proton transfer reactions, which are coupled with the redox reaction, may be used to control reaction rate. Here, we characterize a tyrosine-containing beta hairpin, Peptide O, which has a cross-strand, noncovalent interaction between its single tyrosine, Y5, and a cysteine (C14). Circular dichroism provides evidence for a thermostable beta-turn. EPR spectroscopy shows that Peptide O forms a neutral tyrosyl radical after UV photolysis at 160 K. Molecular dynamics simulations support a phenolic/SH interaction in the tyrosine singlet and radical states. Differential pulse voltammetry exhibits pH dependence consistent with the formation of a neutral tyrosyl radical and a p K a change in two other residues. A redox-coupled decrease in cysteine p K a from 9 (singlet) to 6.9 (radical) is assigned. At pD 11, picosecond transient absorption spectroscopy after UV photolysis monitors tyrosyl radical recombination via electron transfer (ET). The ET rate in Peptide O is indistinguishable from the ET rates observed in peptides containing a histidine and a cyclohexylalanine (Cha) at position 14. However, at pD 9, the tyrosyl radical decays via PCET, and the decay rate is slowed, when compared to the histidine 14 variant. Notably, the decay rate is accelerated, when compared to the Cha 14 variant. We conclude that redox coupling between tyrosine and cysteine can act as a PCET control mechanism in proteins. 
    more » « less