skip to main content


Title: Mating system is associated with seed phenotypes upon loss of RNA-directed DNA methylation in Brassicaceae
Abstract

In plants, de novo DNA methylation is guided by 24-nt short interfering (si)RNAs in a process called RNA-directed DNA methylation (RdDM). Primarily targeted at transposons, RdDM causes transcriptional silencing and can indirectly influence expression of neighboring genes. During reproduction, a small number of siRNA loci are dramatically upregulated in the maternally derived seed coat, suggesting that RdDM might have a special function during reproduction. However, the developmental consequence of RdDM has been difficult to dissect because disruption of RdDM does not result in overt phenotypes in Arabidopsis (Arabidopsis thaliana), where the pathway has been most thoroughly studied. In contrast, Brassica rapa mutants lacking RdDM have a severe seed production defect, which is determined by the maternal sporophytic genotype. To explore the factors that underlie the different phenotypes of these species, we produced RdDM mutations in 3 additional members of the Brassicaceae family: Camelina sativa, Capsella rubella, and Capsella grandiflora. Among these 3 species, only mutations in the obligate outcrosser, C. grandiflora, displayed a seed production defect similar to Brassica rapa mutants, suggesting that mating system is a key determinant for reproductive phenotypes in RdDM mutants.

 
more » « less
NSF-PAR ID:
10478658
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Plant Physiology
ISSN:
0032-0889
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Small RNAs trigger repressive DNA methylation at thousands of transposable elements in a process called RNA‐directed DNA methylation (RdDM). The molecular mechanism of RdDM is well characterized in Arabidopsis, yet the biological function remains unclear, as loss of RdDM in Arabidopsis causes no overt defects, even after generations of inbreeding. It is known that 24 nucleotide Pol IV‐dependent siRNAs, the hallmark of RdDM, are abundant in flowers and developing seeds, indicating that RdDM might be important during reproduction. Here we show that, unlike Arabidopsis, mutations in the Pol IV‐dependent small RNA pathway cause severe and specific reproductive defects inBrassica rapa. High rates of abortion occur when seeds have RdDM mutant mothers, but not when they have mutant fathers. Although abortion occurs after fertilization, RdDM function is required in maternal somatic tissue, not in the female gametophyte or the developing zygote, suggesting that siRNAs from the maternal soma might function in filial tissues. We propose that recently outbreeding species such asB. rapaare key to understanding the role of RdDM during plant reproduction.

     
    more » « less
  2. Abstract

    Twenty-four-nucleotide (nt) small interfering RNAs (siRNAs) maintain asymmetric DNA methylation at thousands of euchromatic transposable elements in plant genomes in a process called RNA-directed DNA methylation (RdDM). RdDM is dispensable for growth and development in Arabidopsis thaliana, but is required for reproduction in other plants, such as Brassica rapa. The 24-nt siRNAs are abundant in maternal reproductive tissue, due largely to overwhelming expression from a few loci in the ovule and developing seed coat, termed siren loci. A recent study showed that 24-nt siRNAs produced in the anther tapetal tissue can methylate male meiocyte genes in trans. Here we show that in B. rapa, a similar process takes place in female tissue. siRNAs are produced from gene fragments embedded in some siren loci, and these siRNAs can trigger methylation in trans at related protein-coding genes. This trans-methylation is associated with silencing of some target genes and may be responsible for seed abortion in RdDM mutants. Furthermore, we demonstrate that a consensus sequence in at least two families of DNA transposons is associated with abundant siren expression, most likely through recruitment of CLASSY3, a putative chromatin remodeler. This research describes a mechanism whereby RdDM influences gene expression and sheds light on the role of RdDM during plant reproduction.

     
    more » « less
  3. Small RNAs are abundant in plant reproductive tissues, especially 24-nucleotide (nt) small interfering RNAs (siRNAs). Most 24-nt siRNAs are dependent on RNA Pol IV and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and establish DNA methylation at thousands of genomic loci in a process called RNA-directed DNA methylation (RdDM). InBrassica rapa, RdDM is required in the maternal sporophyte for successful seed development. Here, we demonstrate that a small number of siRNA loci account for over 90% of siRNA expression duringB. rapaseed development. These loci exhibit unique characteristics with regard to their copy number and association with genomic features, but they resemble canonical 24-nt siRNA loci in their dependence on RNA Pol IV/RDR2 and role in RdDM. These loci are expressed in ovules before fertilization and in the seed coat, embryo, and endosperm following fertilization. We observed a similar pattern of 24-nt siRNA expression in diverse angiosperms despite rapid sequence evolution at siren loci. In the endosperm, siren siRNAs show a marked maternal bias, and siren expression in maternal sporophytic tissues is required for siren siRNA accumulation. Together, these results demonstrate that seed development occurs under the influence of abundant maternal siRNAs that might be transported to, and function in, filial tissues.

     
    more » « less
  4. Abstract

    Efficient plastid transformation in Arabidopsis (Arabidopsis thaliana) requires genetic lines that are hypersensitive to spectinomycin due to the absence of a chloroplast acetyl-coenzyme A carboxylase (ACCase) encoded in the acetyl-coenzyme A carboxylase 2 (ACC2) nuclear gene. To obtain plastid transformation-competent oilseed rape (Brassica napus), we inactivated all nuclear encoded, chloroplast targeted ACCase copies using CRISPR–Cas9. Brassica napus (2n = 38, AACC) is a recent interspecific hybrid of Brassica rapa (2n = 20, AA) and B. oleracea (2n = 18, CC) and is expected to have at least two ACC2 copies, one from each parent. The sequenced genome has two ACC2 copies, one that is B. rapa-like and one that is B. oleracea-like. We designed single-guide RNAs (sgRNAs) that could simultaneously inactivate both nuclear ACC2 copies. We expressed Cas9 from a chimeric egg cell promoter 1.2 (EC1.2p) known to yield homozygous or biallelic mutants in Arabidopsis in the T1 generation. To maximize the probability of functionally inactivating both orthologs in a single step, each of the two vectors carried four sgRNAs. Four T0 transgenic lines were obtained by Agrobacterium tumefaciens-mediated hypocotyl transformation. Amplicon sequencing confirmed mutations in ACC2 genes in 10 T1 progeny, in seven of which no wild-type (WT) copy remained. The B. napus T2 seedlings lacking WT ACC2 gene copies exhibited a spectinomycin hypersensitive phenotype, suggesting that they will be a useful resource for chloroplast genome transformation.

     
    more » « less
  5. Abstract Background

    H2A.X is an H2A variant histone in eukaryotes, unique for its ability to respond to DNA damage, initiating the DNA repair pathway. H2A.X replacement within the histone octamer is mediated by the FAcilitates Chromatin Transactions (FACT) complex, a key chromatin remodeler. FACT is required for DEMETER (DME)-mediated DNA demethylation at certain loci inArabidopsis thalianafemale gametophytes during reproduction. Here, we sought to investigate whether H2A.X is involved in DME- and FACT-mediated DNA demethylation during reproduction.

    Results

    H2A.X is encoded by two genes in Arabidopsis genome,HTA3andHTA5. We generatedh2a.xdouble mutants, which displayed a normal growth profile, whereby flowering time, seed development, and root tip organization, S-phase progression and proliferation were all normal. However,h2a.xmutants were more sensitive to genotoxic stress, consistent with previous reports. H2A.X fused to Green Fluorescent Protein (GFP) under theH2A.Xpromoter was highly expressed especially in newly developing Arabidopsis tissues, including in male and female gametophytes, where DME is also expressed. We examined DNA methylation inh2a.xdeveloping seeds and seedlings using whole genome bisulfite sequencing, and found that CG DNA methylation is decreased genome-wide inh2a.xmutant endosperm. Hypomethylation was most striking in transposon bodies, and occurred on both parental alleles in the developing endosperm, but not the embryo or seedling.h2a.x-mediated hypomethylated sites overlapped DME targets, but also included other loci, predominately located in heterochromatic transposons and intergenic DNA.

    Conclusions

    Our genome-wide methylation analyses suggest that H2A.X could function in preventing access of the DME demethylase to non-canonical sites. Overall, our data suggest that H2A.X is required to maintain DNA methylation homeostasis in the unique chromatin environment of the Arabidopsis endosperm.

     
    more » « less