skip to main content


Title: A Multivariate Frequency Analysis Framework to Estimate the Return Period of Hurricane Events Using Event‐Based Copula
Abstract

This study proposed a framework to evaluate multivariate return periods of hurricanes using event‐based frequency analysis techniques. The applicability of the proposed framework was demonstrated using point‐based and spatial analyses on a recent catastrophic event, Hurricane Ian. Univariate, bivariate, and trivariate frequency analyses were performed by applying generalized extreme value distribution and copula on annual maximum series of flood volume, peak discharge, total rainfall depth, maximum wind speed, wave height and storm surge. As a result of point‐based analyses, return periods of Hurricane Ian was investigated by using our framework; univariate return periods were estimated from 39.2 to 60.2 years, bivariate from 824.1 to 1,592.6 years, and trivariate from 332.1 to 1,722.9 years for the Daytona‐St. Augustine Basin. In the Florida Bay‐Florida Keys Basin, univariate return periods were calculated from 7.5 to 32.9 years, bivariate from 36.5 to 114.9 years, and trivariate from 25.0 to 214.8 years. Using the spatial analyses, we were able to generate the return period map of Hurricane Ian across Florida. Based on bivariate frequency analyses, 18% of hydrologic unit code 8 (HUC8) basins had an average return period of more than 30 years. Sources of uncertainty, due to the scarcity of analysis data, stationarity assumption and impact of other weather systems such as strong frontal passages, were also discussed. Despite these limitations, our framework and results will be valuable in disaster response and recovery.

 
more » « less
NSF-PAR ID:
10478679
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
59
Issue:
12
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A hurricane event can often produce both intense rainfall and a storm tide that can cause a major compound flooding threat to coastlines. This paper examined applications of multivariate copula‐based time series models using data observed during Hurricane Irma (2017) along the coastlines of Florida, Georgia, and South Carolina, United States. Multivariate time series models were developed using bivariate copulas wherein storm tide and rainfall data were modeled using LOWESS‐based autoregressive moving average (ARMA).nsamples of observed data were then synthesized using a Monte Carlo approach in which the empirical copula and the parametric estimate of the copula were obtained to approximate two‐sidedp‐values using the Rosenblatt probability integral transform method. Analysis suggested that proper selection of the underlying LOWESS‐based ARMA model was the crucial aspect for modeling compound flooding wherein Archimedean, Elliptical, and Extreme Value copulas all offered consistent flexibility in terms of dependence modeling. As a backdrop to compound flood probabilities, this research also outlined both theoretical and applied frameworks for the calculation of non‐exceedance probabilities in a multidimensional environment using classical isofrequency probability assumptions for the “AND” (a bivariate joint probability) and Survival Kendall definitions. Random realizations from storm copulas combined with multivariate non‐exceedance probability definitions ultimately showed there were periods of temporal yet cyclical high intensities that lasted 1–2 hr. Lastly, a discussion is presented on the broader application of the proposed methodology within the field of engineering design and risk management which may serve as a catalyst for the continued research in compound flooding.

     
    more » « less
  2. Land-use history is the template upon which contemporary plant and tree populations establish and interact with one another and exerts a legacy on the structure and dynamics of species assemblages and ecosystems. We use the first census (2010–2014) of a 35-ha forest-dynamics plot at the Harvard Forest in central Massachusetts to describe the composition and structure of the woody plants in this plot, assess their spatial associations within and among the dominant species using univariate and bivariate spatial point-pattern analysis, and examine the interactions between land-use history and ecological processes. The plot includes 108,632 live stems ≥ 1 cm in diameter (2,215 individuals/ha) and 7,595 standing dead stems ≥ 5 cm in diameter. Live tree basal area averaged 42.25 m 2 /ha, of which 84% was represented by Tsuga canadensis (14.0 m 2 / ha), Quercus rubra (northern red oak; 9.6 m2/ ha), Acer rubrum (7.2 m 2 / ha) and Pinus strobus (eastern white pine; 4.4 m 2 / ha). These same four species also comprised 78% of the live aboveground biomass, which averaged 245.2 Mg/ ha. Across all species and size classes, the forest contains a preponderance (> 80,000) of small stems (<10-cm diameter) that exhibit a reverse-J size distribution. Significant spatial clustering of abundant overstory species was observed at all spatial scales examined. Spatial distributions of A. rubrum and Q. rubra showed negative intraspecific correlations in diameters up to at least a 150-m spatial lag, likely indicative of crowding effects in dense forest patches following intensive past land use. Bivariate marked point-pattern analysis, showed that T. canadensis and Q. rubra diameters were negatively associated with one another, indicating resource competition for light. Distribution and abundance of the common overstory species are predicted best by soil type, tree neighborhood effects, and two aspects of land-use history: when fields were abandoned in the late 19th century and the succeeding forest types recorded in 1908. In contrast, a history of intensive logging prior to 1950 and a damaging hurricane in 1938 appear to have had little effect on the distribution and abundance of present-day tree species. Our findings suggest that current day composition and structure are still being influenced by anthropogenic disturbances that occurred over a century ago. 
    more » « less
  3. Abstract

    Compound flooding frequently threatens life and assets of people who live in low‐lying coastal regions. Co‐occurrence or sequence of extremes (e.g., high river discharge and extreme coastal water level) is of paramount importance as it may result in flood hazards with potential impacts larger than each extreme in isolation. Here, we use a coupled approach, that is, bivariate statistical analysis linked to hydrodynamic modeling, to quantify compounding effects of flood drivers and generate flood hazard maps near Savannah, Georgia. Also, we integrate wetland elevation correction in digital elevation models to improve hydrodynamic simulations of compound events and hence the accuracy of flood hazard (inundation and velocity) maps. Using statistical measures, we analyze compounding effects of terrestrial/coastal flood drivers and wetland elevation correction on maximum floodwater height (MFH) and velocity (MFV) for 50‐year return period scenarios. In addition, we compare our results to MFH and MFV patterns of Hurricane Matthew that hit the West Atlantic Coasts on October 2016. The statistical measures indicate significant differences among the scenarios, partly explained by wetland elevation correction. Inundation and velocity maps suggest that a proposed composite, that is, synthesis of marginalQ, marginalH, and “AND” scenarios, can lead to the lowest average underestimation of MFH (−0.35 m) and overestimation of MFV (0.20 m/s) within wetland areas. We conclude that a thorough compound flooding assessment should leverage statistical analysis and hydrodynamic modeling of extremes including corrections of coastal digital elevation models.

     
    more » « less
  4. Abstract

    Modern microfossil distributions reflect site‐specific habitats and provide an opportunity to assess sediment transport pathways in the nearshore environment. When applied to overwash deposits in the geological record, they provide insight into sediment provenance and transport, factors important for understanding patterns of frequency and intensity of past storms and tsunamis. Modern distribution studies are rare and often the first established ones occur immediately after an overwash event as part of a post‐event field survey. This is problematic because it is unclear what effect overwash events have on nearshore microfossil assemblages and what time interval is necessary for them to return to pre‐event conditions. This study documents the impacts of Hurricane Irma on nearshore sediments off the coast of Anegada, British Virgin Islands, using distributions ofHomotrema rubrum, an encrusting foraminifer with a defined provenance in coral reefs. At four sampling intervals spanning two years, from six months pre‐Hurricane Irma to eighteen months after, surface sediment was collected from three transects on the northern and southern shores of the island. Partitioning Around Medoids cluster analysis revealed that Hurricane Irma introduced an influx of well‐preserved fragments into the reef flat and made the sediments more uniform, limiting the foraminifer’s utility as a known sediment transport indicator. The mixing of sediments along the two northern transects (reef proximal) persisted for seven to eighteen months before returning to near pre‐hurricane conditions. However, the southern transect (absence of reef), whereHomotrema rubrumconcentrations are significantly less, failed to recover within the time period assessed by this study, indicating a variable recovery period between Atlantic Ocean and Caribbean Sea facing shorelines. Results from this study suggest that a waiting period of at least eighteen months after a major storm is recommended before collecting surface sediment from the nearshore environments of reef‐dominated coastlines.

     
    more » « less
  5. As atmospheric carbon dioxide (CO2) and temperatures increase with modern climate change, ancient hothouse periods become a focal point for understanding ecosystem function under similar conditions. The early Eocene exhibited high temperatures, high CO2 levels, and similar tectonic plate configuration as today, so it has been invoked as an analog to modern climate change. During the early Eocene, the greater Green River Basin (GGRB) of southwestern Wyoming was covered by an ancient hypersaline lake (Lake Gosiute; Green River Formation) and associated fluvial and floodplain systems (Wasatch and Bridger formations). The volcaniclastic Bridger Formation was deposited by an inland delta that drained from the northwest into freshwater Lake Gosiute and is known for its vast paleontological assemblages. Using this well-preserved basin deposited during a period of tectonic and paleoclimatic interest, we employ multiple proxies to study trends in provenance, parent material, weathering, and climate throughout 1 million years. The Blue Rim escarpment exposes approximately 100 m of the lower Bridger Formation, which includes plant and mammal fossils, solitary paleosol profiles, and organic remains suitable for geochemical analyses, as well as ash beds and volcaniclastic sandstone beds suitable for radioisotopic dating. New 40Ar/39Ar ages from the middle and top of the Blue Rim escarpment constrain the age of its strata to ∼ 49.5–48.5 Myr ago during the “falling limb” of the early Eocene Climatic Optimum. We used several geochemical tools to study provenance and parent material in both the paleosols and the associated sediments and found no change in sediment input source despite significant variation in sedimentary facies and organic carbon burial. We also reconstructed environmental conditions, including temperature, precipitation (both from paleosols), and the isotopic composition of atmospheric CO2 from plants found in the floral assemblages. Results from paleosol-based reconstructions were compared to semi-co-temporal reconstructions made using leaf physiognomic techniques and marine proxies. The paleosol-based reconstructions (near the base of the section) of precipitation (608–1167 mm yr−1) and temperature (10.4 to 12.0 ∘C) were within error of, although lower than, those based on floral assemblages, which were stratigraphically higher in the section and represented a highly preserved event later in time. Geochemistry and detrital feldspar geochronology indicate a consistent provenance for Blue Rim sediments, sourcing predominantly from the Idaho paleoriver, which drained the active Challis volcanic field. Thus, because there was neither significant climatic change nor significant provenance change, variation in sedimentary facies and organic carbon burial likely reflected localized geomorphic controls and the relative height of the water table. The ecosystem can be characterized as a wet, subtropical-like forest (i.e., paratropical) throughout the interval based upon the floral humidity province and Holdridge life zone schemes. Given the mid-paleolatitude position of the Blue Rim escarpment, those results are consistent with marine proxies that indicate that globally warm climatic conditions continued beyond the peak warm conditions of the early Eocene Climatic Optimum. The reconstructed atmospheric δ13C value (−5.3 ‰ to −5.8 ‰) closely matches the independently reconstructed value from marine microfossils (−5.4 ‰), which provides confidence in this reconstruction. Likewise, the isotopic composition reconstructed matches the mantle most closely (−5.4 ‰), agreeing with other postulations that warming was maintained by volcanic outgassing rather than a much more isotopically depleted source, such as methane hydrates. 
    more » « less