skip to main content


This content will become publicly available on June 1, 2024

Title: Noncovalent interactions that tune the reactivities of the flavins in bifurcating electron transferring flavoprotein
Bifurcating electron transferring flavoproteins (Bf-ETFs) tune chemically identical flavins to two contrasting roles. To understand how, we used hybrid quantum mechanical molecular mechanical calculations to characterize non-covalent interactions applied to each flavin by the protein. Our computations replicated the differences between the reactivities of the flavins: the electron transferring flavin (ETflavin) was calculated to stabilize anionic semiquinone (ASQ) as needed to execute its single-electron transfers, whereas the Bf flavin (Bfflavin) was found to disfavor the ASQ state more than does free flavin and to be less susceptible to reduction. The stability of ETflavin ASQ was attributed in part to H-bond donation to the flavin O2 from a nearby His side chain, via comparison of models employing different tautomers of His. This H-bond between O2 and the ET site was uniquely strong in the ASQ state, whereas reduction of ETflavin to the anionic hydroquinone (AHQ) was associated with side chain reorientation, backbone displacement and reorganization of its H-bond network including a Tyr from the other domain and subunit of the ETF. The Bf site was less responsive overall, but formation of the Bfflavin AHQ allowed a nearby Arg side chain to adopt an alternative rotamer that can H-bond to the Bfflavin O4. This would stabilize the anionic Bfflavin and rationalize effects of mutation at this position. Thus, our computations provide insights on states and conformations that have not been possible to characterize experimentally, offering explanations for observed residue conservation and raising possibilities that can now be tested.  more » « less
Award ID(s):
2108134
NSF-PAR ID:
10478722
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier Inc on behalf of American Society for Biochemistry and Molecular Biology
Date Published:
Journal Name:
Journal of Biological Chemistry
Volume:
299
Issue:
6
ISSN:
0021-9258
Page Range / eLocation ID:
104762
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Flavin-based electron bifurcation allows enzymes to redistribute energy among electrons by coupling endergonic and exergonic electron transfer reactions. Diverse bifurcating enzymes employ a two-flavin electron transfer flavoprotein (ETF) that accepts hydride from NADH at a flavin (the so-called bifurcating FAD, Bf-FAD). The Bf-FAD passes one electron exergonically to a second flavin thereby assuming a reactive semiquinone state able to reduce ferredoxin or flavodoxin semiquinone. The flavin that accepts one electron and passes it on via exergonic electron transfer is known as the electron transfer FAD (ET-FAD) and is believed to correspond to the single FAD present in canonical ETFs, in domain II. The Bf-FAD is believed to be the one that is unique to bifurcating ETFs, bound between domains I and III. This very reasonable model has yet to be challenged experimentally. Herein we used site-directed mutagenesis to disrupt FAD binding to the presumed Bf site between domains I and III, in the Bf-ETF from Rhodopseudomonas palustris ( Rpa ETF). The resulting protein contained only 0.80 ± 0.05 FAD, plus 1.21 ± 0.04 bound AMP as in canonical ETFs. The flavin was not subject to reduction by NADH, confirming absence of Bf-FAD. The retained FAD displayed visible circular dichroism (CD) similar to that of the ET-FAD of Rpa ETF. Likewise, the mutant underwent two sequential one-electron reductions forming and then consuming anionic semiquinone, reproducing the reactivity of the ET-FAD. These data confirm that the retained FAD in domain II corresponds the ET-FAD. Quantum chemical calculations of the absorbance and CD spectra of each of WT Rpa ETF's two flavins reproduced the observed differences between their CD and absorbance signatures. The calculations for the flavin bound in domain II agreed better with the spectra of the ET-flavin, and those calculated based on the flavin between domains I and III agreed better with spectra of the Bf-flavin. Thus calculations independently confirm the locations of each flavin. We conclude that the site in domain II harbours the ET-FAD whereas the mutated site between domains I and III is the Bf-FAD site, confirming the accepted model by two different tests. 
    more » « less
  2. Flavins are central to countless enzymes but display different reactivities depending on their environments. This is understood to reflect modulation of the flavin electronic structure. To understand changes in orbital natures, energies, and correlation over the ring system, we begin by comparing seven flavin variants differing at C8, exploiting their different electronic spectra to validate quantum chemical calculations. Ground state calculations replicate a Hammett trend and reveal the significance of the flavin π-system. Comparison of higher-level theories establishes CC2 and ACD(2) as methods of choice for characterization of electronic transitions. Charge transfer character and electron correlation prove responsive to the identity of the substituent at C8. Indeed, bond length alternation analysis demonstrates extensive conjugation and delocalization from the C8 position throughout the ring system. Moreover, we succeed in replicating a particularly challenging UV/Vis spectrum by implementing hybrid QM/MM in explicit solvents. Our calculations reveal that the presence of nonbonding lone pairs correlates with the change in the UV/Vis spectrum observed when the 8-methyl is replaced by NH2, OH, or SH. Thus, our computations offer routes to understanding the spectra of flavins with different modifications. This is a first step toward understanding how the same is accomplished by different binding environments. 
    more » « less
  3. Complexes of 18-crown-6 ether (18C6) with four protonated amino acids (AAs) are examined using infrared multiple photon dissociation (IRMPD) action spectroscopy utilizing light generated by the infrared free electron laser at the Centre Laser Infrarouge d’Orsay (CLIO). The AAs examined in this work include glycine (Gly) and the three basic AAs: histidine (His), lysine (Lys), and arginine (Arg). To identify the (AA)H + (18C6) conformations present in the experimental studies, the measured IRMPD spectra are compared to spectra calculated at the B3LYP/6-311+G(d,p) level of theory. Relative energies of various conformers and isomers are provided by single point energy calculations carried out at the B3LYP, B3P86, M06, and MP2(full) levels using the 6-311+G(2p,2d) basis set. The comparisons between the IRMPD and theoretical IR spectra indicate that 18C6 binds to Gly and His via the protonated backbone amino group, whereas protonated Lys prefers binding via the protonated side-chain amino group. Results for Arg are less definitive with strong evidence for binding to the protonated guanidino side chain (the calculated ground conformer at most levels of theory), but contributions from backbone binding to a zwitterionic structure are likely. 
    more » « less
  4. Recently, a variety of enzymes have been found to accept electrons from NAD(P)H yet reduce lower-potential carriers such as ferredoxin and flavodoxin semiquinone, in apparent violation of thermodynamics. The reaction is favorable overall, however, because these enzymes couple the foregoing endergonic one-electron transfer to exergonic transfer of the other electron from each NAD(P)H, in a process called 'flavin-based electron bifurcation'. The reduction midpoint potentials (E°s) of the multiple flavins in these enzymes are critical to their mechanisms. We describe methods we have found to be useful for measuring each of the E°s of each of the flavins in bifurcating electron transfer flavoproteins. 
    more » « less
  5. Cysteine sulfonic acid (Cys-SO3H; cysteic acid) is an oxidative post-translational modification of cysteine, resulting from further oxidation from cysteine sulfinic acid (Cys- SO2H). Cysteine sulfonic acid is considered an irreversible post-translational modification, which serves as a biomarker of oxidative stress that has resulted in oxidative damage to proteins. Cysteine sulfonic acid is anionic, as a sulfonate (Cys-SO –; cysteate), in the ionization state that 3 is almost exclusively present at physiological pH (pKa ~ –2). In order to understand protein structural changes that can occur upon oxidation to cysteine sulfonic acid, we analyzed its conformational preferences, using experimental methods, bioinformatics, and DFT-based computational analysis. Cysteine sulfonic acid was incorporated into model peptides for α-helix and polyproline II helix (PPII). Within peptides, oxidation of cysteine to the sulfonic acid proceeds rapidly and efficiently at room temperature in solution with methyltrioxorhenium (MeReO3) and H2O2. Peptides containing cysteine sulfonic acid were also generated on solid phase using trityl-protected cysteine and oxidation with MeReO3 and H2O2. Using methoxybenzyl (Mob)-protected cysteine, solid-phase oxidation with MeReO3 and H2O2 generated the Mob sulfone precursor to Cys-SO – within fully synthesized peptides. These two solid-phase methods allow the synthesis of peptides containing either Cys-SO – or Cys-SO – in a 32 practical manner, with no solution-phase synthesis required. Cys-SO – had low PPII propensity 3 for PPII propagation, despite promoting a relatively compact conformation in φ. In contrast, in a PPII initiation model system, Cys-SO – promoted PPII relative to neutral Cys, with PPII initiation similar to Cys thiolate but less than Cys-SO – or Ala. In an α-helix model system, Cys- 2 SO – promoted α-helix near the N-terminus, due to favorable helix dipole interactions and 3 favorable α-helix capping via a sulfonate-amide side chain-main chain hydrogen bond. Across all peptides, the sulfonate side chain was significantly less ordered than that of the sulfinate. Analysis of Cys-SO – in the PDB revealed a very strong propensity for local (i/i or i/i+1) side 3 chain-main chain sulfonate-amide hydrogen bonds for Cys-SO –, with > 80% of Cys-SO – 33 residues exhibiting these interactions. DFT calculations conducted to explore these conformational preferences indicated that side chain-main chain hydrogen bonds of the sulfonate with the intraresidue amide and/or with the i+1 amide were favorable. However, hydrogen bonds to water or to amides, as well as interactions with oxophilic metals, were weaker for the sulfonate than the sulfinate, due to lower charge density on the oxygens in the sulfonate. 
    more » « less