skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stage-mediated priority effects and season lengths shape long-term competition dynamics
The relative arrival time of species can affect their interactions and thus determine which species persist in a community. Although this phenomenon, called priority effect, is widespread in natural communities, it is unclear how it depends on the length of growing season. Using a seasonal stage-structured model, we show that differences in stages of interacting species could generate priority effects by altering the strength of stabilizing and equalizing coexistence mechanisms, changing outcomes between exclusion, coexistence and positive frequency dependence. However, these priority effects are strongest in systems with just one or a few generations per season and diminish in systems where many overlapping generations per season dilute the importance of stage-specific interactions. Our model reveals a novel link between the number of generations in a season and the consequences of priority effects, suggesting that consequences of phenological shifts driven by climate change should depend on specific life histories of organisms.  more » « less
Award ID(s):
1655626
PAR ID:
10478843
Author(s) / Creator(s):
; ;
Publisher / Repository:
Royal Society Publishing
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
290
Issue:
2007
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Phenological shifts can alter the relative arrival time of competing species in natural communities, but predicting the consequences for species interactions and community dynamics is a major challenge. Here we show that differences in relative arrival time can lead to predictable priority effects that alter the outcome of competitive interactions. By experimentally manipulating the relative arrival time of two competing tadpole species across a resource gradient, we found that delaying relative arrival of a species reduced the interaction asymmetry between species and could even reverse competitive dominance. However, the strength of these priority effects was contingent on the abundance of the shared resource. Priority effects were generally weak when resources were limited, but increased at higher resource levels. Importantly, this context dependencycould be explained by a shift in per capita interaction strength driven by a shift in relative body sizes of competitors. These results shed new light into the mechanisms that drive variation in priority effects and help predict consequences of phenological shifts across different environments. 
    more » « less
  2. Modern coexistence theory is increasingly used to explain how differences between competing species lead to coexistence versus competitive exclusion. Although research testing this theory has focused on deterministic cases of competitive exclusion, in which the same species always wins, mounting evidence suggests that competitive exclusion is often historically contingent, such that whichever species happens to arrive first excludes the other. Coexistence theory predicts that historically contingent exclusion, known as priority effects, will occur when large destabilizing differences (positive frequency-dependent growth rates of competitors), combined with small fitness differences (differences in competitors’ intrinsic growth rates and sensitivity to competition), create conditions under which neither species can invade an established population of its competitor. Here we extend the empirical application of modern coexistence theory to determine the conditions that promote priority effects. We conducted pairwise invasion tests with four strains of nectar-colonizing yeasts to determine how the destabilizing and fitness differences that drive priority effects are altered by two abiotic factors characterizing the nectar environment: sugar concentration and pH. We found that higher sugar concentrations increased the likelihood of priority effects by reducing fitness differences between competing species. In contrast, higher pH did not change the likelihood of priority effects, but instead made competition more neutral by bringing both fitness differences and destabilizing differences closer to zero. This study demonstrates how the empirical partitioning of priority effects into fitness and destabilizing components can elucidate the pathways through which environmental conditions shape competitive interactions. 
    more » « less
  3. Species‐specific phenological responses to changing climate are reshuffling the timing of species interactions, however we do not fully understand the consequences of these changes for species' population dynamics and community composition. In this study, we experimentally manipulated the timing of germination for five annual plant species from southern California and used pairwise competition experiments and coexistence theory to quantify how phenological shifts may impact species interactions and coexistence. We found that phenological shifts may help promote coexistence when they confer an advantage for competitively inferior species, but in other cases promote dominance by competitively superior species. Earlier germination generally increased species' performance relative to competitors, but the relative changes in intra‐and inter‐specific interactions caused more complex effects on niche and fitness differences. Phenological differences tended to reduce stabilising niche differences for many species pairs and reduced overall coexistence probabilities. Synthesis. While phenological differences among species have typically been considered a form of niche partitioning, it seems increasingly likely that phenological offsets could destabilise species coexistence. The net effects of changing phenology on species coexistence will depend on the complex combinations of effects on intra‐ and inter‐specific interactions, which remain challenging to predict. 
    more » « less
  4. Abstract While most studies of species coexistence focus on the mechanisms that maintain coexistence, it is equally important to understand the mechanisms that structure failed coexistence. For example, California annual grasslands are heavily invaded ecosystems, where non‐native annuals have largely dominated and replaced native communities. These systems are also highly variable, with a high degree of rainfall seasonality and interannual rainfall variability—a quality implicated in the coexistence of functionally distinct species. Yet, despite the apparent strength of this variation, coexistence between native and non‐native annuals in this system has faltered.To test how variation‐dependent coexistence mechanisms modulate failed coexistence, we implemented a competition experiment between two previously common native forbs and three now‐dominant non‐native annual grasses spanning a conservative‐acquisitive range of traits. We grew individuals from each species under varying densities of all other species as competitors, under either wetter or drier early season rainfall treatments. Using subsequent seed production, we parameterized competition models, assessed the potential for coexistence among species pairs and quantified the relative influence of variation‐dependent coexistence mechanisms.As expected, we found little potential for coexistence. Competition was dominated by the non‐native grassAvena fatua, while native forbs were unable to invade non‐native grasses. Mutual competitive exclusion was common across almost all species and often contingent on rainfall, suggesting rainfall‐mediated priority effects. Among variation‐dependent mechanisms, the temporal storage effect had a moderate stabilizing effect for four of five species when averaged across competitors, while relative nonlinearity in competition was largely destabilizing, except for the most conservative non‐native grass, which benefited from a competitive release under dry conditions.Synthesis: Our findings suggest that rainfall variability does little to mitigate the fitness differences that underlie widespread annual grass invasion in California, but that it influences coexistence dynamics among the now‐dominant non‐native grasses. 
    more » « less
  5. Priority effects, where arrival order and initial relative abundance modulate local species interactions, can exert taxonomic, functional, and evolutionary influences on ecological communities by driving them to alternative states. It remains unclear if these wide-ranging consequences of priority effects can be explained systematically by a common underlying factor. Here, we identify such a factor in an empirical system. In a series of field and laboratory studies, we focus on how pH affects nectar-colonizing microbes and their interactions with plants and pollinators. In a field survey, we found that nectar microbial communities in a hummingbird-pollinated shrub, Diplacus (formerly Mimulus ) aurantiacus , exhibited abundance patterns indicative of alternative stable states that emerge through domination by either bacteria or yeasts within individual flowers. In addition, nectar pH varied among D. aurantiacus flowers in a manner that is consistent with the existence of these alternative stable states. In laboratory experiments, Acinetobacter nectaris , the bacterium most commonly found in D. aurantiacus nectar, exerted a strongly negative priority effect against Metschnikowia reukaufii , the most common nectar-specialist yeast, by reducing nectar pH. This priority effect likely explains the mutually exclusive pattern of dominance found in the field survey. Furthermore, experimental evolution simulating hummingbird-assisted dispersal between flowers revealed that M. reukaufii could evolve rapidly to improve resistance against the priority effect if constantly exposed to A. nectaris -induced pH reduction. Finally, in a field experiment, we found that low nectar pH could reduce nectar consumption by hummingbirds, suggesting functional consequences of the pH-driven priority effect for plant reproduction. Taken together, these results show that it is possible to identify an overarching factor that governs the eco-evolutionary dynamics of priority effects across multiple levels of biological organization. 
    more » « less