Clinical translation of stem cell therapies for heart disease requires electrical integration of transplanted cardiomyocytes. Generation of electrically matured human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) is critical for electrical integration. Here, we found that hiPSC-derived endothelial cells (hiPSC-ECs) promoted the expression of selected maturation markers in hiPSC-CMs. Using tissue-embedded stretchable mesh nanoelectronics, we achieved a long-term stable map of human three-dimensional (3D) cardiac microtissue electrical activity. The results revealed that hiPSC-ECs accelerated the electrical maturation of hiPSC-CMs in 3D cardiac microtissues. Machine learning–based pseudotime trajectory inference of cardiomyocyte electrical signals further revealed the electrical phenotypic transition path during development. Guided by the electrical recording data, single-cell RNA sequencing identified that hiPSC-ECs promoted cardiomyocyte subpopulations with a more mature phenotype, and multiple ligand-receptor interactions were up-regulated between hiPSC-ECs and hiPSC-CMs, revealing a coordinated multifactorial mechanism of hiPSC-CM electrical maturation. Collectively, these findings show that hiPSC-ECs drive hiPSC-CM electrical maturation via multiple intercellular pathways.
more »
« less
AMPK activator-treated human cardiac spheres enhance maturation and enable pathological modeling
Abstract BackgroundCardiac pathological outcome of metabolic remodeling is difficult to model using cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) due to low metabolic maturation. MethodshiPSC-CM spheres were treated with AMP-activated protein kinase (AMPK) activators and examined for hiPSC-CM maturation features, molecular changes and the response to pathological stimuli. ResultsTreatment of hiPSC-CMs with AMPK activators increased ATP content, mitochondrial membrane potential and content, mitochondrial DNA, mitochondrial function and fatty acid uptake, indicating increased metabolic maturation. Conversely, the knockdown of AMPK inhibited mitochondrial maturation of hiPSC-CMs. In addition, AMPK activator-treated hiPSC-CMs had improved structural development and functional features—including enhanced Ca2+transient kinetics and increased contraction. Transcriptomic, proteomic and metabolomic profiling identified differential levels of expression of genes, proteins and metabolites associated with a molecular signature of mature cardiomyocytes in AMPK activator-treated hiPSC-CMs. In response to pathological stimuli, AMPK activator-treated hiPSC-CMs had increased glycolysis, and other pathological outcomes compared to untreated cells. ConclusionAMPK activator-treated cardiac spheres could serve as a valuable model to gain novel insights into cardiac diseases.
more »
« less
- Award ID(s):
- 1926387
- PAR ID:
- 10478850
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Stem Cell Research & Therapy
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 1757-6512
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract AimsWe have shown that human cardiac muscle patches (hCMPs) containing three different types of cardiac cells—cardiomyocytes (CMs), smooth muscle cells (SMCs), and endothelial cells (ECs), all of which were differentiated from human pluripotent stem cells (hPSCs)—significantly improved cardiac function, infarct size, and hypertrophy in a pig model of myocardial infarction (MI). However, hPSC-derived CMs (hPSC-CMs) are phenotypically immature, which may lead to arrhythmogenic concerns; thus, since hPSC-derived cardiac fibroblasts (hPSC-CFs) appear to enhance the maturity of hPSC-CMs, we compared hCMPs containing hPSC-CMs, -SMCs, -ECs, and -CFs (4TCC-hCMPs) with a second hCMP construct that lacked hPSC-CFs but was otherwise identical [hCMP containing hPSC-CMs, -AECs, and -SMCs (3TCC-hCMPs)]. Methods and resultshCMPs were generated in a fibrin scaffold. MI was induced in severe combined immunodeficiency (SCID) mice through permanent coronary artery (left anterior descending) ligation, followed by treatment with cardiac muscle patches. Animal groups included: MI heart treated with 3TCC-hCMP; with 4TCC-hCMP; MI heart treated with no patch (MI group) and sham group. Cardiac function was evaluated using echocardiography, and cell engraftment rate and infarct size were evaluated histologically at 4 weeks after patch transplantation. The results from experiments in cultured hCMPs demonstrate that the inclusion of cardiac fibroblast in 4TCC-hCMPs had (i) better organized sarcomeres; (ii) abundant structural, metabolic, and ion-channel markers of CM maturation; and (iii) greater conduction velocities (31 ± 3.23 cm/s, P < 0.005) and action-potential durations (APD50 = 365 ms ± 2.649, P < 0.0001; APD = 408 ms ± 2.757, P < 0.0001) than those (velocity and APD time) in 3TCC-hCMPs. Furthermore, 4TCC-hCMPs transplantation resulted in better cardiac function [ejection fraction (EF) = 49.18% ± 0.86, P < 0.05], reduced infarct size (22.72% ± 0.98, P < 0.05), and better engraftment (15.99% ± 1.56, P < 0.05) when compared with 3TCC-hCMPs (EF = 41.55 ± 0.92%, infarct size = 39.23 ± 4.28%, and engraftment = 8.56 ± 1.79%, respectively). ConclusionCollectively, these observations suggest that the inclusion of hPSC-CFs during hCMP manufacture promotes hPSC-CM maturation and increases the potency of implanted hCMPs for improving cardiac recovery in mice model of MI.more » « less
-
BackgroundAlcohol use in pregnancy increases the risk of abnormal cardiac development, and excessive alcohol consumption in adults can induce cardiomyopathy, contractile dysfunction, and arrhythmias. Understanding molecular mechanisms underlying alcohol‐induced cardiac toxicity could provide guidance in the development of therapeutic strategies. MethodsWe have performed proteomic and bioinformatic analysis to examine protein alterations globally and quantitatively in cardiomyocytes derived from human‐induced pluripotent stem cells (hiPSC‐CMs) treated with ethanol (EtOH). Proteins in both cell lysates and extracellular culture media were systematically quantitated. ResultsTreatment with EtOH caused severe detrimental effects on hiPSC‐CMs as indicated by significant cell death and deranged Ca2+handling. Treatment of hiPSC‐CMs with EtOH significantly affected proteins responsible for stress response (e.g., GPX1 and HSPs), ion channel‐related proteins (e.g. ATP1A2), myofibril structure proteins (e.g., MYL2/3), and those involved in focal adhesion and extracellular matrix (e.g., ILK and PXN). Proteins involved in the TNF receptor‐associated factor 2 signaling (e.g., CPNE1 and TNIK) were also affected by EtOH treatment. ConclusionsThe observed changes in protein expression highlight the involvement of oxidative stress and dysregulation of Ca2+handling and contraction while also implicating potential novel targets in alcohol‐induced cardiotoxicity. These findings facilitate further exploration of potential mechanisms, discovery of novel biomarkers, and development of targeted therapeutics against EtOH‐induced cardiotoxicity.more » « less
-
Abstract The structural and functional maturation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is essential for pharmaceutical testing, disease modeling, and ultimately therapeutic use. Multicellular 3D-tissue platforms have improved the functional maturation of hiPSC-CMs, but probing cardiac contractile properties in a 3D environment remains challenging, especially at depth and in live tissues. Using small-angle X-ray scattering (SAXS) imaging, we show that hiPSC-CMs matured and examined in a 3D environment exhibit a periodic spatial arrangement of the myofilament lattice, which has not been previously detected in hiPSC-CMs. The contractile force is found to correlate with both the scattering intensity (R2 = 0.44) and lattice spacing (R2 = 0.46). The scattering intensity also correlates with lattice spacing (R2 = 0.81), suggestive of lower noise in our structural measurement than in the functional measurement. Notably, we observed decreased myofilament ordering in tissues with a myofilament mutation known to lead to hypertrophic cardiomyopathy (HCM). Our results highlight the progress of human cardiac tissue engineering and enable unprecedented study of structural maturation in hiPSC-CMs.more » « less
-
Recent innovations in differentiating cardiomyocytes from human induced pluripotent stem cells (hiPSCs) have unlocked a viable path to creating in vitro cardiac models. Currently, hiPSC-derived cardiomyocytes (hiPSC-CMs) remain immature, leading many in the field to explore approaches to enhance cell and tissue maturation. Here, we systematically analyzed 300 studies using hiPSC-CM models to determine common fabrication, maturation and assessment techniques used to evaluate cardiomyocyte functionality and maturity and compiled the data into an open-access database. Based on this analysis, we present the diversity of, and current trends in, in vitro models and highlight the most common and promising practices for functional assessments. We further analyzed outputs spanning structural maturity, contractile function, electrophysiology and gene expression and note field-wide improvements over time. Finally, we discuss opportunities to collectively pursue the shared goal of hiPSC-CM model development, maturation and assessment that we believe are critical for engineering mature cardiac tissue.more » « less
An official website of the United States government

