skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Surgical techniques for evacuation of chronic subdural hematoma: a mini-review
Chronic subdural hematoma is one of the most common neurosurgical pathologies with over 160,000 cases in the United States and Europe each year. The current standard of care involves surgically evacuating the hematoma through a cranial opening, however, varied patient risk profiles, a significant recurrence rate, and increasing financial burden have sparked innovation in the field. This mini-review provides a brief overview of currently used evacuation techniques, including emerging adjuncts such as endoscopic assistance and middle meningeal artery embolization. This review synthesizes the body of available evidence on efficacy and risk profiles for each critical aspect of surgical technique in cSDH evacuation and provides insight into trends in the field and promising new technologies.  more » « less
Award ID(s):
2234713
PAR ID:
10478947
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Sinai Biodesign
Date Published:
Journal Name:
Frontiers in Neurology
Volume:
14
ISSN:
1664-2295
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To mitigate the devastating impacts of hurricanes on people’s lives, communities, and societal infrastructures, disaster management would benefit considerably from a detailed understanding of evacuation, including the socio-demographics of the populations that evacuate, or remain, down to disaggregated geographic levels such as local neighborhoods. A detailed household evacuation prediction model for local neighborhoods requires both a robust household evacuation decision model and individual household data for small geographic units. This paper utilizes a recently pub- lished statistical meta-analysis for the first requirement and then conducts a rigorous population synthesis procedure for the second. Our model produces predicted non-evacuation rates for all US Census block groups for the Tampa-St. Petersburg-Clearwater Metropolitan Statistical Area for a Hurricane Irma-like storm along with their socio-demographic and hurricane impact risk profiles. Our model predictions indicate that non- evacuation rates are likely to vary considerably, even across neighboring block groups, driven by the variability in evacuation risk profiles. Our results also demonstrate how different predictors may come to the fore in influencing non-evacuation in different block groups, and that predictors which may have an outsize impact on individual household evacuation decisions, such as Race, are not necessarily associated with the greatest differentials in non-evacuation rates when we aggregate households to block group level and above. Our research is intended to provide a framework for the design of hurricane evacuation prediction tools that could be used in disaster management. 
    more » « less
  2. Abstract Field courses can provide formative experiences that also reduce disparities in STEM education. Impacts of the ongoing COVID‐19 pandemic on‐field programs have been particularly severe, as many institutions shifted to online instruction. Some courses retained in‐person field experiences during the pandemic, and achieved high student learning outcomes. Here, I describe an approach to mitigating risk of COVID‐19 and other hazards during expedition‐based field courses, and student learning outcomes achieved using that approach. I applied comprehensive risk management to in‐person field expeditions that treated COVID‐19 as a hazard, requiring mitigation to maintain an acceptable low level of risk. Prior to broad availability of COVID‐19 vaccines, we applied a coronavirus‐free “bubble” strategy in which all participants passed a COVID‐19 PCR test immediately before departure and then avoided contact with people outside our bubble. In the future, vaccination can reduce risk further. We implemented additional safety factors to reduce risk of incidents that could require evacuation into medical facilities overloaded with COVID‐19 patients. The courses were successful: we had no infections or other serious incidents and student learning outcomes were transformative. The approach provides a model for conducting immersive field courses during the pandemic and beyond. Several field course networks are implementing similar approaches to restore valuable field education opportunities that have declined during the pandemic. 
    more » « less
  3. Abstract This study investigates how different risk predictors influenced households’ evacuation decisions during a dual‐threat event (Hurricane Laura and COVID‐19 pandemic). The Protective Action Decision Model (PADM) literature indicates that perceived threat variables are the most influential variables that drive evacuation decisions. This study applies the PADM to investigate a dual‐threat disaster that has conflicting protective action recommendations. Given the novelty, scale, span, impact, and messaging around COVID‐19, it is crucial to see how hurricanes along the Gulf Coast—a hazard addressed seasonally by residents with mostly consistent protective action messaging—produce different reactions in residents in this pandemic context. Household survey data were collected during early 2021 using a disproportionate stratified sampling procedure to include households located in mandatory and voluntary evacuation areas across the coastal counties in Texas and parishes in Louisiana that were affected by Hurricane Laura. Structural equation modeling was used to identify the relationships between perceived threats and evacuation decisions. The findings suggest affective risk perceptions strongly affected cognitive risk perceptions (CRPs). Notably, hurricane and COVID‐19 CRPs are significant predictors of hurricane evacuation decisions in different ways. Hurricane CRPs encourage evacuation, but COVID‐19 CRPs hinder evacuation decisions. 
    more » « less
  4. This paper proposes a new evacuation strategy for mobile agents fleeing an indoor environment with a contaminated spatial field. Since the effects of a contaminated field on the mobile agents are cumulative, then a policy ensuring that each agent reaches safety while minimizing the accumulated effects of the spatial field is warranted. While each agent is fleeing towards safety, it is also collecting information on the spatial field along its own escape path. This process information, provided by each evacuating mobile agent, is harnessed for the state reconstruction of the spatial process. Thus, an integrated state estimation scheme with the simultaneous sequential agent evacuation is proposed. Numerical results are included to highlight the proposed evacuation policy. 
    more » « less
  5. Cao, Jason Xinyu; Ge, Ying-En (Ed.)
    This study explores household-level evacuation decision-making in response to Hurricane Laura, in a context where hurricane risk reduction measures contradicted COVID-19 risk reduction measures. Data were collected using a mail-based survey approach from households along the coast of Texas and Louisiana to explore drivers of and barriers to evacuation, including COVID-19 measures such as negative affect, risk perceptions, protective actions, and exposure. Testing for direct and indirect effects among the drivers of and barriers to evacuation, we find that many of our COVID-19 measures did not have a direct effect on evacuation but did have indirect effects through other factors. We also found evidence of both direct and indirect relationships with regards to more conventional drivers of evacuation found in the literature. We close with a discussion of the limitations and implications of this study. 
    more » « less