Categorical data analysis becomes challenging when high-dimensional sparse covariates are involved, which is often the case for omics data. We introduce a statistical procedure based on multinomial logistic regression analysis for such scenarios, including variable screening, model selection, order selection for response categories, and variable selection. We perform our procedure on high-dimensional gene expression data with 801 patients, 2426 genes, and five types of cancerous tumors. As a result, we recommend three finalized models: one with 74 genes achieves extremely low cross-entropy loss and zero predictive error rate based on a five-fold cross-validation; and two other models with 31 and 4 genes, respectively, are recommended for prognostic multi-gene signatures.
more »
« less
Variable Selection for Sparse Data with Applications to Vaginal Microbiome and Gene Expression Data
Sparse data with a high portion of zeros arise in various disciplines. Modeling sparse high-dimensional data is a challenging and growing research area. In this paper, we provide statistical methods and tools for analyzing sparse data in a fairly general and complex context. We utilize two real scientific applications as illustrations, including a longitudinal vaginal microbiome data and a high dimensional gene expression data. We recommend zero-inflated model selections and significance tests to identify the time intervals when the pregnant and non-pregnant groups of women are significantly different in terms of Lactobacillus species. We apply the same techniques to select the best 50 genes out of 2426 sparse gene expression data. The classification based on our selected genes achieves 100% prediction accuracy. Furthermore, the first four principal components based on the selected genes can explain as high as 83% of the model variability.
more »
« less
- Award ID(s):
- 1924859
- PAR ID:
- 10478990
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Genes
- Volume:
- 14
- Issue:
- 2
- ISSN:
- 2073-4425
- Page Range / eLocation ID:
- 403
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundSingle-cell RNA-sequencing (scRNA-seq) technologies allow for the study of gene expression in individual cells. Often, it is of interest to understand how transcriptional activity is associated with cell-specific covariates, such as cell type, genotype, or measures of cell health. Traditional approaches for this type of association mapping assume independence between the outcome variables (or genes), and perform a separate regression for each. However, these methods are computationally costly and ignore the substantial correlation structure of gene expression. Furthermore, count-based scRNA-seq data pose challenges for traditional models based on Gaussian assumptions. ResultsWe aim to resolve these issues by developing a reduced-rank regression model that identifies low-dimensional linear associations between a large number of cell-specific covariates and high-dimensional gene expression readouts. Our probabilistic model uses a Poisson likelihood in order to account for the unique structure of scRNA-seq counts. We demonstrate the performance of our model using simulations, and we apply our model to a scRNA-seq dataset, a spatial gene expression dataset, and a bulk RNA-seq dataset to show its behavior in three distinct analyses. ConclusionWe show that our statistical modeling approach, which is based on reduced-rank regression, captures associations between gene expression and cell- and sample-specific covariates by leveraging low-dimensional representations of transcriptional states.more » « less
-
Advances in single cell transcriptomics have allowed us to study the identity of single cells. This has led to the discovery of new cell types and high resolution tissue maps of them. Technologies that measure multiple modalities of such data add more detail, but they also complicate data integration. We offer an integrated analysis of the spatial location and gene expression profiles of cells to determine their identity. We propose scHybridNMF (single-cell Hybrid Nonnegative Matrix Factorization), which performs cell type identification by combining sparse nonnegative matrix factorization (sparse NMF) with k-means clustering to cluster high-dimensional gene expression and low-dimensional location data. We show that, under multiple scenarios, including the cases where there is a small number of genes profiled and the location data is noisy, scHybridNMF outperforms sparse NMF, k-means, and an existing method that uses a hidden Markov random field to encode cell location and gene expression data for cell type identification.more » « less
-
Abstract Given the complex relationship between gene expression and phenotypic outcomes, computationally efficient approaches are needed to sift through large high-dimensional datasets in order to identify biologically relevant biomarkers. In this report, we describe a method of identifying the most salient biomarker genes in a dataset, which we call “candidate genes”, by evaluating the ability of gene combinations to classify samples from a dataset, which we call “classification potential”. Our algorithm, Gene Oracle, uses a neural network to test user defined gene sets for polygenic classification potential and then uses a combinatorial approach to further decompose selected gene sets into candidate and non-candidate biomarker genes. We tested this algorithm on curated gene sets from the Molecular Signatures Database (MSigDB) quantified in RNAseq gene expression matrices obtained from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) data repositories. First, we identified which MSigDB Hallmark subsets have significant classification potential for both the TCGA and GTEx datasets. Then, we identified the most discriminatory candidate biomarker genes in each Hallmark gene set and provide evidence that the improved biomarker potential of these genes may be due to reduced functional complexity.more » « less
-
Abstract Histopathological images are used to characterize complex phenotypes such as tumor stage. Our goal is to associate features of stained tissue images with high-dimensional genomic markers. We use convolutional autoencoders and sparse canonical correlation analysis (CCA) on paired histological images and bulk gene expression to identify subsets of genes whose expression levels in a tissue sample correlate with subsets of morphological features from the corresponding sample image. We apply our approach, ImageCCA, to two TCGA data sets, and find gene sets associated with the structure of the extracellular matrix and cell wall infrastructure, implicating uncharacterized genes in extracellular processes. We find sets of genes associated with specific cell types, including neuronal cells and cells of the immune system. We apply ImageCCA to the GTEx v6 data, and find image features that capture population variation in thyroid and in colon tissues associated with genetic variants (image morphology QTLs, or imQTLs), suggesting that genetic variation regulates population variation in tissue morphological traits.more » « less
An official website of the United States government

