Viral lysis of phytoplankton is one of the most common forms of death on Earth. Building on an assay used extensively to assess rates of phytoplankton loss to predation by grazers, lysis rates are increasingly quantified through dilution-based techniques. In this approach, dilution of viruses and hosts are expected to reduce infection rates and thus increase host net growth rates (i.e., accumulation rates). The difference between diluted and undiluted host growth rates is interpreted as a measurable proxy for the rate of viral lytic death. These assays are usually conducted in volumes 1 L. To increase throughput, we implemented a miniaturized, high-throughput, high-replication, flow cytometric microplate dilution assay to measure viral lysis in environmental samples sourced from a suburban pond and the North Atlantic Ocean. The most notable outcome we observed was a decline in phytoplankton densities that was exacerbated by dilution, instead of the increased growth rates expected from lowered virus-phytoplankton encounters. We sought to explain this counterintuitive outcome using theoretical, environmental, and experimental analyses. Our study shows that, while die-offs could be partly explained by a ‘plate effect’ due to small incubation volumes and cells adhering to walls, the declines in phytoplankton densities are not volume-dependent. Rather, they are driven by many density- and physiology-dependent effects of dilution on predation pressure, nutrient limitation, and growth, all of which violate the original assumptions of dilution assays. As these effects are volume-independent, these processes likely occur in all dilution assays that our analyses show to be remarkably sensitive to dilution-altered phytoplankton growth and insensitive to actual predation pressure.
more »
« less
Altered growth and death in dilution-based viral predation assays
Viral lysis of phytoplankton is one of the most common forms of death on Earth. Building on an assay used extensively to assess rates of phytoplankton loss to predation by grazers, lysis rates are increasingly quantified through dilution-based techniques. In this approach, dilution of viruses and hosts are expected to reduce infection rates and thus increase host net growth rates (i.e., accumulation rates). The difference between diluted and undiluted host growth rates is interpreted as a measurable proxy for the rate of viral lytic death. These assays are usually conducted in volumes ≥ 1 L. To increase throughput, we implemented a miniaturized, high-throughput, high-replication, flow cytometric microplate dilution assay to measure viral lysis in environmental samples sourced from a suburban pond and the North Atlantic Ocean. The most notable outcome we observed was a decline in phytoplankton densities that was exacerbated by dilution, instead of the increased growth rates expected from lowered virus-phytoplankton encounters. We sought to explain this counterintuitive outcome using theoretical, environmental, and experimental analyses. Our study shows that, while die-offs could be partly explained by a ‘plate effect’ due to small incubation volumes and cells adhering to walls, the declines in phytoplankton densities are not volume-dependent. Rather, they are driven by many density- and physiology-dependent effects of dilution on predation pressure, nutrient limitation, and growth, all of which violate the original assumptions of dilution assays. As these effects are volume-independent, these processes likely occur in all dilution assays that our analyses show to be remarkably sensitive to dilution-altered phytoplankton growth and insensitive to actual predation pressure. Incorporating altered growth as well as predation, we present a logical framework that categorizes locations by the relative dominance of these mechanisms, with general applicability to dilution-based assays.
more »
« less
- Award ID(s):
- 2021032
- PAR ID:
- 10478993
- Editor(s):
- Chen, Peng
- Publisher / Repository:
- PLoS
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 18
- Issue:
- 7
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0288114
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Viral infection exerts selection pressure on marine microbes, as virus-induced cell lysis causes 20 to 50% of cell mortality, resulting in fluxes of biomass into oceanic dissolved organic matter. Archaeal and bacterial populations can defend against viral infection using the clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) system, which relies on specific matching between a spacer sequence and a viral gene. If a CRISPR spacer match to any gene within a viral genome is equally effective in preventing lysis, no viral genes should be preferentially matched by CRISPR spacers. However, if there are differences in effectiveness, certain viral genes may demonstrate a greater frequency of CRISPR spacer matches. Indeed, homology search analyses of bacterioplankton CRISPR spacer sequences against virioplankton sequences revealed preferential matching of replication proteins, nucleic acid binding proteins, and viral structural proteins. Positive selection pressure for effective viral defense is one parsimonious explanation for these observations. CRISPR spacers from virioplankton metagenomes preferentially matched methyltransferase and phage integrase genes within virioplankton sequences. These virioplankton CRISPR spacers may assist infected host cells in defending against competing phage. Analyses also revealed that half of the spacer-matched viral genes were unknown, some genes matched several spacers, and some spacers matched multiple genes, a many-to-many relationship. Thus, CRISPR spacer matching may be an evolutionary algorithm, agnostically identifying those genes under stringent selection pressure for sustaining viral infection and lysis. Investigating this subset of viral genes could reveal those genetic mechanisms essential to virus-host interactions and provide new technologies for optimizing CRISPR defense in beneficial microbes. IMPORTANCE The CRISPR-Cas system is one means by which bacterial and archaeal populations defend against viral infection which causes 20 to 50% of cell mortality in the ocean. We tested the hypothesis that certain viral genes are preferentially targeted for the initial attack of the CRISPR-Cas system on a viral genome. Using CASC, a pipeline for CRISPR spacer discovery, and metagenome data from oceanic microbes and viruses, we found a clear subset of viral genes with high match frequencies to CRISPR spacers. Moreover, we observed a many-to-many relationship of spacers and viral genes. These high-match viral genes were involved in nucleotide metabolism, DNA methylation, and viral structure. It is possible that CRISPR spacer matching is an evolutionary algorithm pointing to those viral genes most important to sustaining infection and lysis. Studying these genes may advance the understanding of virus-host interactions in nature and provide new technologies for leveraging CRISPR-Cas systems in beneficial microbes.more » « less
-
Abstract Eukaryotic phytoplankton contribute to the flow of elements through marine food webs, biogeochemical cycles, and Earth’s climate. Therefore, how phytoplankton die is a critical determinate of the flow and fate of nutrients. While heterotroph grazing and viral infection contribute to phytoplankton mortality, recent evidence suggests that bacteria-derived cues also control phytoplankton lysis. Here, we report exposure to nanomolar concentrations of 2,3,4,5-tetrabromopyrrole (TBP), a brominated chemical cue synthesized by marine γ-proteobacteria, resulted in mortality of seven phylogenetically-diverse phytoplankton species. A comparison of nine compounds of marine-origin containing a range of cyclic moieties and halogenation indicated that both a single pyrrole ring and increased bromination were most lethal to the coccolithophore,Emiliania huxleyi. TBP also rapidly induced the production of reactive oxygen species and the release of intracellular calcium stores, both of which can trigger the activation of cellular death pathways. Mining of the Ocean Gene Atlas indicated that TBP biosynthetic machinery is globally distributed throughout the water column in coastal areas. These findings suggest that bacterial cues play multiple functions in regulating phytoplankton communities by inducing biochemical changes associated with cellular death. Chemically-induced lysis by bacterial infochemicals is yet another variable that must be considered when modeling oceanic nutrient dynamics.more » « less
-
Viruses that infect phytoplankton are abundant in all regions of the global ocean. Despite their ubiquity, little is understood regarding how biotic interactions can alter virus infection success as well as the fate of phytoplankton hosts. In previous work, the bacterially derived compound 2-heptyl-4-quinolone (HHQ) has been shown to protect the cosmopolitan coccolithophoreEmiliania huxleyifrom virus-induced mortality. The present study explores the potential mechanisms through which protection is conferred. Using a suite of transmission electron microscopy and physiological diagnostic staining techniques, we show that whenE. huxleyiis exposed to HHQ, viruses can gain entry into cells but viral replication and release is inhibited. These findings are supported by a smaller burst size, as well as lower infectious and total virus production when the host is treated with nanomolar concentrations of HHQ. Additionally, diagnostic staining results indicate that programmed cell death markers commonly associated with viral infection are not activated when infectedE. huxleyiare exposed to HHQ. Together, these results suggest that the ability of HHQ to inhibit infectious viral production protects the alga not from getting infected, but from cell lysis. This work identifies a new mechanistic role of bacterial quorum sensing molecules in mediating viral infections in marine microbial systems.more » « less
-
Death is a common outcome of infection, but most disease models do not track hosts after death. Instead, these hosts disappear into a void. This assumption lacks critical realism, because dead hosts can alter host–pathogen dynamics. Here, we develop a theoretical framework of carbon‐based models combining disease and ecosystem perspectives to investigate the consequences of feedbacks between living and dead hosts on disease dynamics and carbon cycling. Because autotrophs (i.e. plants and phytoplankton) are critical regulators of carbon cycling, we developed general model structures and parameter combinations to broadly reflect disease of autotrophic hosts across ecosystems. Analytical model solutions highlight the importance of disease–ecosystem coupling. For example, decomposition rates of dead hosts mediate pathogen spread, and carbon flux between live and dead biomass pools are sensitive to pathogen effects on host growth and death rates. Variation in dynamics arising from biologically realistic parameter combinations largely fell along a single gradient from slow to fast carbon turnover rates, and models predicted higher disease impacts in fast turnover systems (e.g. lakes and oceans) than slow turnover systems (e.g. boreal forests). Our results demonstrate that a unified framework, including the effects of pathogens on carbon cycling, provides novel hypotheses and insights at the nexus of disease and ecosystem ecology.more » « less
An official website of the United States government

