A five-fold expansion of the global RNA virome reveals multiple new clades of RNA bacteriophages
High-throughput RNA sequencing offers broad opportunities to explore the Earth RNA virome. Mining 5,150 diverse metatranscriptomes uncovered >2.5 million RNA virus contigs. Analysis of >330,000 RNA-dependent RNA polymerases (RdRPs) shows that this expansion corresponds to a 5-fold increase of the known RNA virus diversity. Gene content analysis revealed multiple protein domains previously not found in RNA viruses and implicated in virus-host interactions. Extended RdRP phylogeny supports the monophyly of the five established phyla and reveals two putative additional bacteriophage phyla and numerous putative additional classes and orders. The dramatically expanded phylum Lenarviricota, consisting of bacterial and related eukaryotic viruses, now accounts for a third of the RNA virome. Identification of CRISPR spacer matches and bacteriolytic proteins suggests that subsets of picobirnaviruses and partitiviruses, previously associated with eukaryotes, infect prokaryotic hosts.
more »
« less
- Award ID(s):
- 2021032
- PAR ID:
- 10479035
- Publisher / Repository:
- Cell
- Date Published:
- Journal Name:
- Cell
- Volume:
- 185
- ISSN:
- 1097-417
- Page Range / eLocation ID:
- 4023–4037
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT Recovery of virus sequences from old samples provides an opportunity to study virus evolution and reconstruct historic virus-host interactions. Studies of old virus sequences have mainly relied on DNA or on RNA from fixed or frozen samples. The millions of specimens in natural history museums represent a potential treasure trove of old virus sequences, but it is not clear how well RNA survives in old samples. We experimentally assessed the stability of RNA in insects stored dry at room temperature over 72 weeks. Although RNA molecules grew fragmented, RNA yields remained surprisingly constant. RT-qPCR of host and virus RNA showed minimal differences between dried and frozen specimens. To assess RNA survival in much older samples we acquiredDrosophilaspecimens from North American entomological collections. We recovered sequences from known and novel viruses including several coding complete virus genomes from a fly collected in 1908. We found that the virome ofD. melanogasterhas changed little over the past century. Galbut virus, the most prevalent virus infection in contemporaryD. melanogaster, was also the most common in historic samples. Finally, we investigated the genomic and physical features of surviving RNA. RNA that survived was fragmented, chemically damaged, and preferentially double stranded or contained in ribonucleoprotein complexes. This showed that RNA - especially certain types of RNA – can survive in biological specimens over extended periods in the absence of fixation or freezing and confirms the utility of dried specimens to provide a clearer understanding of virus evolution.more » « less
-
The insect virome is composed of a myriad of viruses. Both field populations and laboratory colonies of insects harbour diverse viruses, including viruses that infect the insect itself, viruses of microbes associated with the insect, and viruses associated with ingested materials. Metagenomics analysis for identification of virus-derived sequences has allowed for new appreciation of the extent and diversity of the insect virome. The complex interactions between insect viruses and host antiviral immune pathways (RNA interference and apoptosis), and between viruses and other members of the microbiome (e.g. Wolbachia) are becoming apparent. In this chapter, an overview of the diversity of viruses in insects and recent virus discovery research for specific insects and insect-derived cell lines is provided. The opportunities and challenges associated with the insect virome, including the potential impacts of viruses on both research and insect management programs are also addressed.more » « less
-
Understanding the pathways by which simple RNA viruses self-assemble from their coat proteins and RNA is of practical and fundamental interest. Although RNA–protein interactions are thought to play a critical role in the assembly, our understanding of their effects is limited because the assembly process is difficult to observe directly. We address this problem by using interferometric scattering microscopy, a sensitive optical technique with high dynamic range, to follow the in vitro assembly kinetics of more than 500 individual particles of brome mosaic virus (BMV)—for which RNA–protein interactions can be controlled by varying the ionic strength of the buffer. We find that when RNA–protein interactions are weak, BMV assembles by a nucleation-and-growth pathway in which a small cluster of RNA-bound proteins must exceed a critical size before additional proteins can bind. As the strength of RNA–protein interactions increases, the nucleation time becomes shorter and more narrowly distributed, but the time to grow a capsid after nucleation is largely unaffected. These results suggest that the nucleation rate is controlled by RNA–protein interactions, while the growth process is driven less by RNA–protein interactions and more by protein–protein interactions and intraprotein forces. The nucleated pathway observed with the plant virus BMV is strikingly similar to that previously observed with bacteriophage MS2, a phylogenetically distinct virus with a different host kingdom. These results raise the possibility that nucleated assembly pathways might be common to other RNA viruses.more » « less
-
null (Ed.)Sea cucumbers (Holothuroidea; Echinodermata) are ecologically significant constituents of benthic marine habitats. We surveilled RNA viruses inhabiting eight species (representing four families) of holothurian collected from four geographically distinct locations by viral metagenomics, including a single specimen of Apostichopus californicus affected by a hitherto undocumented wasting disease. The RNA virome comprised genome fragments of both single-stranded positive sense and double stranded RNA viruses, including those assigned to the Picornavirales, Ghabrivirales, and Amarillovirales. We discovered an unconventional flavivirus genome fragment which was most similar to a shark virus. Ghabivirales-like genome fragments were most similar to fungal totiviruses in both genome architecture and homology and had likely infected mycobiome constituents. Picornavirales, which are commonly retrieved in host-associated viral metagenomes, were similar to invertebrate transcriptome-derived picorna-like viruses. The greatest number of viral genome fragments was recovered from the wasting A. californicus library compared to the asymptomatic A. californicus library. However, reads from the asymptomatic library recruited to nearly all recovered wasting genome fragments, suggesting that they were present but not well represented in the grossly normal specimen. These results expand the known host range of flaviviruses and suggest that fungi and their viruses may play a role in holothurian ecology.more » « less