skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: XHap: haplotype assembly using long-distance read correlations learned by transformers
  SummaryReconstructing haplotypes of an organism from a set of sequencing reads is a computationally challenging (NP-hard) problem. In reference-guided settings, at the core of haplotype assembly is the task of clustering reads according to their origin, i.e. grouping together reads that sample the same haplotype. Read length limitations and sequencing errors render this problem difficult even for diploids; the complexity of the problem grows with the ploidy of the organism. We present XHap, a novel method for haplotype assembly that aims to learn correlations between pairs of sequencing reads, including those that do not overlap but may be separated by large genomic distances, and utilize the learned correlations to assemble the haplotypes. This is accomplished by leveraging transformers, a powerful deep-learning technique that relies on the attention mechanism to discover dependencies between non-overlapping reads. Experiments on semi-experimental and real data demonstrate that the proposed method significantly outperforms state-of-the-art techniques in diploid and polyploid haplotype assembly tasks on both short and long sequencing reads. Availability and implementationThe code for XHap and the included experiments is available at https://github.com/shoryaconsul/XHap.  more » « less
Award ID(s):
2109983
PAR ID:
10479047
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics Advances
Volume:
3
Issue:
1
ISSN:
2635-0041
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Birol, Inanc (Ed.)
    Abstract Motivation Oxford Nanopore sequencing has great potential and advantages in population-scale studies. Due to the cost of sequencing, the depth of whole-genome sequencing for per individual sample must be small. However, the existing single nucleotide polymorphism (SNP) callers are aimed at high-coverage Nanopore sequencing reads. Detecting the SNP variants on low-coverage Nanopore sequencing data is still a challenging problem. Results We developed a novel deep learning-based SNP calling method, NanoSNP, to identify the SNP sites (excluding short indels) based on low-coverage Nanopore sequencing reads. In this method, we design a multi-step, multi-scale and haplotype-aware SNP detection pipeline. First, the pileup model in NanoSNP utilizes the naive pileup feature to predict a subset of SNP sites with a Bi-long short-term memory (LSTM) network. These SNP sites are phased and used to divide the low-coverage Nanopore reads into different haplotypes. Finally, the long-range haplotype feature and short-range pileup feature are extracted from each haplotype. The haplotype model combines two features and predicts the genotype for the candidate site using a Bi-LSTM network. To evaluate the performance of NanoSNP, we compared NanoSNP with Clair, Clair3, Pepper-DeepVariant and NanoCaller on the low-coverage (∼16×) Nanopore sequencing reads. We also performed cross-genome testing on six human genomes HG002–HG007, respectively. Comprehensive experiments demonstrate that NanoSNP outperforms Clair, Pepper-DeepVariant and NanoCaller in identifying SNPs on low-coverage Nanopore sequencing data, including the difficult-to-map regions and major histocompatibility complex regions in the human genome. NanoSNP is comparable to Clair3 when the coverage exceeds 16×. Availability and implementation https://github.com/huangnengCSU/NanoSNP.git. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  2. Abstract BackgroundStudies on haemosporidian diversity, including origin of human malaria parasites, malaria's zoonotic dynamic, and regional biodiversity patterns, have used target gene approaches. However, current methods have a trade-off between scalability and data quality. Here, a long-read Next-Generation Sequencing protocol using PacBio HiFi is presented. The data processing is supported by a pipeline that uses machine-learning for analysing the reads. MethodsA set of primers was designed to target approximately 6 kb, almost the entire length of the haemosporidian mitochondrial genome. Amplicons from different samples were multiplexed in an SMRTbell® library preparation. A pipeline (HmtG-PacBio Pipeline) to process the reads is also provided; it integrates multiple sequence alignments, a machine-learning algorithm that uses modified variational autoencoders, and a clustering method to identify the mitochondrial haplotypes/species in a sample. Although 192 specimens could be studied simultaneously, a pilot experiment with 15 specimens is presented, including in silico experiments where multiple data combinations were tested. ResultsThe primers amplified various haemosporidian parasite genomes and yielded high-quality mt genome sequences. This new protocol allowed the detection and characterization of mixed infections and co-infections in the samples. The machine-learning approach converged into reproducible haplotypes with a low error rate, averaging 0.2% per read (minimum of 0.03% and maximum of 0.46%). The minimum recommended coverage per haplotype is 30X based on the detected error rates. The pipeline facilitates inspecting the data, including a local blast against a file of provided mitochondrial sequences that the researcher can customize. ConclusionsThis is not a diagnostic approach but a high-throughput method to study haemosporidian sequence assemblages and perform genotyping by targeting the mitochondrial genome. Accordingly, the methodology allowed for examining specimens with multiple infections and co-infections of different haemosporidian parasites. The pipeline enables data quality assessment and comparison of the haplotypes obtained to those from previous studies. Although a single locus approach, whole mitochondrial data provide high-quality information to characterize species pools of haemosporidian parasites. 
    more » « less
  3. Abstract The high sequencing error rate has impeded the application of long noisy reads for diploid genome assembly. Most existing assemblers failed to generate high-quality phased assemblies using long noisy reads. Here, we present PECAT, aPhasedErrorCorrection andAssemblyTool, for reconstructing diploid genomes from long noisy reads. We design a haplotype-aware error correction method that can retain heterozygote alleles while correcting sequencing errors. We combine a corrected read SNP caller and a raw read SNP caller to further improve the identification of inconsistent overlaps in the string graph. We use a grouping method to assign reads to different haplotype groups. PECAT efficiently assembles diploid genomes using Nanopore R9, PacBio CLR or Nanopore R10 reads only. PECAT generates more contiguous haplotype-specific contigs compared to other assemblers. Especially, PECAT achieves nearly haplotype-resolved assembly onB. taurus(Bison×Simmental) using Nanopore R9 reads and phase block NG50 with 59.4/58.0 Mb for HG002 using Nanopore R10 reads. 
    more » « less
  4. Abstract BackgroundDe novo phased (haplo)genome assembly using long-read DNA sequencing data has improved the detection and characterization of structural variants (SVs) in plant and animal genomes. Able to span across haplotypes, long reads allow phased, haplogenome assembly in highly outbred organisms such as forest trees. Eucalyptus tree species and interspecific hybrids are the most widely planted hardwood trees with F1 hybrids of Eucalyptus grandis and E. urophylla forming the bulk of fast-growing pulpwood plantations in subtropical regions. The extent of structural variation and its effect on interspecific hybridization is unknown in these trees. As a first step towards elucidating the extent of structural variation between the genomes of E. grandis and E. urophylla, we sequenced and assembled the haplogenomes contained in an F1 hybrid of the two species. FindingsUsing Nanopore sequencing and a trio-binning approach, we assembled the separate haplogenomes (566.7 Mb and 544.5 Mb) to 98.0% BUSCO completion. High-density SNP genetic linkage maps of both parents allowed scaffolding of 88.0% of the haplogenome contigs into 11 pseudo-chromosomes (scaffold N50 of 43.8 Mb and 42.5 Mb for the E. grandis and E. urophylla haplogenomes, respectively). We identify 48,729 SVs between the two haplogenomes providing the first detailed insight into genome structural rearrangement in these species. The two haplogenomes have similar gene content, 35,572 and 33,915 functionally annotated genes, of which 34.7% are contained in genome rearrangements. ConclusionsKnowledge of SV and haplotype diversity in the two species will form the basis for understanding the genetic basis of hybrid superiority in these trees. 
    more » « less
  5. Abstract Long single-molecular sequencing technologies, such as PacBio circular consensus sequencing (CCS) and nanopore sequencing, are advantageous in detecting DNA 5-methylcytosine in CpGs (5mCpGs), especially in repetitive genomic regions. However, existing methods for detecting 5mCpGs using PacBio CCS are less accurate and robust. Here, we present ccsmeth, a deep-learning method to detect DNA 5mCpGs using CCS reads. We sequence polymerase-chain-reaction treated and M.SssI-methyltransferase treated DNA of one human sample using PacBio CCS for training ccsmeth. Using long (≥10 Kb) CCS reads, ccsmeth achieves 0.90 accuracy and 0.97 Area Under the Curve on 5mCpG detection at single-molecule resolution. At the genome-wide site level, ccsmeth achieves >0.90 correlations with bisulfite sequencing and nanopore sequencing using only 10× reads. Furthermore, we develop a Nextflow pipeline, ccsmethphase, to detect haplotype-aware methylation using CCS reads, and then sequence a Chinese family trio to validate it. ccsmeth and ccsmethphase can be robust and accurate tools for detecting DNA 5-methylcytosines. 
    more » « less