skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiscale adaptive management of social–ecological systems
Abstract Adaptive management is an approach for stewardship of social–ecological systems in circumstances with high uncertainty and high controllability. Although they are largely overlooked in adaptive management (and social–ecological system management), it is important to account for spatial and temporal scales to mediate within- and cross-scale effects of management actions, because cross-scale interactions increase uncertainty and can lead to undesirable consequences. The iterative nature of an adaptive approach can be expanded to multiple scales to accommodate different stakeholder priorities and multiple ecosystem attributes. In this Forum, we introduce multiscale adaptive management of social–ecological systems, which merges adaptive management with panarchy (a multiscale model of social–ecological systems) and demonstrate the importance of this approach with case studies from the Great Plains of North America and the Platte River Basin, in the United States. Adaptive management combined with a focus on the panarchy model of social–ecological systems can help to improve the management of social–ecological systems.  more » « less
Award ID(s):
1920938
PAR ID:
10479056
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
BioScience
Date Published:
Journal Name:
BioScience
ISSN:
0006-3568
Page Range / eLocation ID:
1-8
Subject(s) / Keyword(s):
adaptive management social-ecological systems resilience scale Great Plains
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The concept of adaptive capacity has received significant attention within social-ecological and environmental change research. Within both the resilience and vulnerability literatures specifically, adaptive capacity has emerged as a fundamental concept for assessing the ability of social-ecological systems to adapt to environmental change. Although methods and indicators used to evaluate adaptive capacity are broad, the focus of existing scholarship has predominately been at the individual- and household- levels. However, the capacities necessary for humans to adapt to global environmental change are often a function of individual and societal characteristics, as well as cumulative and emergent capacities across communities and jurisdictions. In this paper, we apply a systematic literature review and co-citation analysis to investigate empirical research on adaptive capacity that focus on societal levels beyond the household. Our review demonstrates that assessments of adaptive capacity at higher societal levels are increasing in frequency, yet vary widely in approach, framing, and results; analyses focus on adaptive capacity at many different levels (e.g. community, municipality, global region), geographic locations, and cover multiple types of disturbances and their impacts across sectors. We also found that there are considerable challenges with regard to the ‘fit’ between data collected and analytical methods used in adequately capturing the cross-scale and cross-level determinants of adaptive capacity. Current approaches to assessing adaptive capacity at societal levels beyond the household tend to simply aggregate individual- or household-level data, which we argue oversimplifies and ignores the inherent interactions within and across societal levels of decision-making that shape the capacity of humans to adapt to environmental change across multiple scales. In order for future adaptive capacity research to be more practice-oriented and effectively guide policy, there is a need to develop indicators and assessments that are matched with the levels of potential policy applications. 
    more » « less
  2. ABSTRACT Backward erosion piping (BEP) is a leading internal erosion mechanism for flood protection system failures. A model capable of predicting critical hydraulic conditions for BEP initiation at multiple scales while also incorporating soil variability is a pressing need. This study formulates and validates a novel multiscale probabilistic BEP initiation framework with incorporation of soil variability. The framework is based on a grain‐scale probabilistic model and the weakest link theory, and the theory of rate processes. The multiscale framework proposed herein is validated through a wide range of available experimental data from independent sources, encompassing tests performed at multiple scales. Following calibration with small‐scale experimental data, the model demonstrates accurate prediction of critical hydraulic gradients at larger scales (3–6 orders of magnitude difference), including the ability to capture the grain size dependence of BEP initiation and providing uncertainty estimates. A systematic analysis is performed to uncover the effects of different soil properties on multiscale critical hydraulic conditions. 
    more » « less
  3. The implications of cumulative land-use decisions and shifting climate on forests, require us to integrate our understanding of ecosystems, markets, policy, and resource management into a social-ecological system. Humans play a central role in macrosystem dynamics, which complicates ecological theories that do not explicitly include human interactions. These dynamics also impact ecological services and related markets, which challenges economic theory. Here, we use two forest macroscale management initiatives to develop a theoretical understanding of how management interacts with ecological functions and services at these scales and how the multiple large-scale management goals work either in consort or conflict with other forest functions and services. We suggest that calling upon theories developed for organismal ecology, ecosystem ecology, and ecological economics adds to our understanding of social-ecological macrosystems. To initiate progress, we propose future research questions to add rigor to macrosystem-scale studies: (1) What are the ecosystem functions that operate at macroscales, their necessary structural components, and how do we observe them? (2) How do systems at one scale respond if altered at another scale? (3) How do we both effectively measure these components and interactions, and communicate that information in a meaningful manner for policy and management across different scales? 
    more » « less
  4. null (Ed.)
    Marine area-based conservation measures including no-take zones (areas with no fishing allowed) are often designed through lengthy processes that aim to optimize for ecological and social objectives. Their (semi) permanence generates high stakes in what seems like a one-shot game. In this paper, we theoretically and empirically explore a model of short-term area-based conservation that prioritizes adaptive co-management: temporary areas closed to fishing, designed by the fishers they affect, approved by the government, and adapted every 5 years. In this model, no-take zones are adapted through learning and trust-building between fishers and government fisheries scientists. We use integrated social-ecological theory and a case study of a network of such fisheries closures (“fishing refugia”) in northwest Mexico to hypothesize a feedback loop between trust, design, and ecological outcomes. We argue that, with temporary and adaptive area-based management, social and ecological outcomes can be mutually reinforcing as long as initial designs are ecologically “good enough” and supported in the social-ecological context. This type of adaptive management also has the potential to adapt to climate change and other social-ecological changes. This feedback loop also predicts the dangerous possibility that low trust among stakeholders may lead to poor design, lack of ecological benefits, eroding confidence in the tool’s capacity, shrinking size, and even lower likelihood of social-ecological benefits. In our case, however, this did not occur, despite poor ecological design of some areas, likely due to buffering by social network effects and alternative benefits. We discuss both the potential and the danger of temporary area-based conservation measures as a learning tool for adaptive co-management and commoning. 
    more » « less
  5. Understanding the adaptive capacity of ecosystems to cope with change is crucial to management. However, unclear and often confusing definitions of adaptive capacity make application of this concept difficult. In this paper, we revisit definitions of adaptive capacity and operationalize the concept. We define adaptive capacity as the latent potential of an ecosystem to alter resilience in response to change. We present testable hypotheses to evaluate complementary attributes of adaptive capacity that may help further clarify the components and relevance of the concept. Adaptive sampling, inference and modeling can reduce key uncertainties incrementally over time and increase learning about adaptive capacity. Such improvements are needed because uncertainty about global change and its effect on the capacity of ecosystems to adapt to social and ecological change is high. 
    more » « less