skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The nano-scanning electrical mobility spectrometer (nSEMS) and its application to size distribution measurements of 1.5–25 nm particles
Abstract. Particle size measurement in the low nanometer regime is of great importance to the study of cloud condensation nuclei formation and to better understand aerosol–cloud interactions. Here we present the design, modeling, and experimental characterization of the nano-scanning electrical mobility spectrometer (nSEMS), a recently developed instrument that probes particle physical properties in the 1.5–25 nm range. The nSEMS consists of a novel differential mobility analyzer and a two-stage condensation particle counter (CPC). The mobility analyzer, a radial opposed-migration ion and aerosol classifier (ROMIAC), can classify nanometer-sized particles with minimal degradation of its resolution and diffusional losses. The ROMIAC operates on a dual high-voltage supply with fast polarity-switching capability to minimize sensitivity to variations in the chemical nature of the ions used to charge the aerosol. Particles transmitted through the mobility analyzer are measured using a two-stage CPC. They are first activated in a fast-mixing diethylene glycol (DEG) stage before being counted by a second detection stage, an ADI MAGIC™ water-based CPC. The transfer function of the integrated instrument is derived from both finite-element modeling and experimental characterization. The nSEMS performance has been evaluated during measurement of transient nucleation and growth events in the CLOUD atmospheric chamber at CERN. We show that the nSEMS can provide high-time- and size-resolution measurement of nanoparticles and can capture the critical aerosol dynamics of newly formed atmospheric particles. Using a soft x-ray bipolar ion source in a compact housing designed to optimize both nanoparticle charging and transmission efficiency as a charge conditioner, the nSEMS has enabled measurement of the contributions of both neutral and ion-mediated nucleation to new particle formation.  more » « less
Award ID(s):
1801329
PAR ID:
10479113
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
The European Geosciences Union (EGU)
Date Published:
Journal Name:
Atmospheric Measurement Techniques
Volume:
14
Issue:
8
ISSN:
1867-8548
Page Range / eLocation ID:
5429 to 5445
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The aerodynamic aerosol classifier (AAC) is a novel instrument that size-selects aerosol particles based on their mechanical mobility. So far, the application of an AAC for cloud condensation nuclei (CCN) activity analysis of aerosols has yet to be explored. Traditionally, a differential mobility analyzer (DMA) is used for aerosol classification in a CCN experimental setup. A DMA classifies particles based on their electrical mobility. Substituting the DMA with an AAC can eliminate multiple-charging artifacts as classification using an AAC does not require particle charging. In this work, we describe an AAC-based CCN experimental setup and CCN analysis method. We also discuss and develop equations to quantify the uncertainties associated with aerosol particle sizing. To do so, we extend the AAC transfer function analysis and calculate the measurement uncertainties of the aerodynamic diameter from the resolution of the AAC. The analysis framework has been packaged into a Python-based CCN Analysis Tool (PyCAT 1.0) open-source code, which is available on GitHub for public use. Results show that the AAC size-selects robustly (AAC resolution is 10.1, diffusion losses are minimal, and particle transmission is high) at larger aerodynamic diameters (≥∼ 85 nm). The size-resolved activation ratio is ideally sigmoidal since no charge corrections are required. Moreover, the uncertainties in the critical particle aerodynamic diameter at a given supersaturation can propagate through droplet activation, and the subsequent uncertainties with respect to the single-hygroscopicity parameter (κ) are reported. For a known aerosol such as sucrose, the κ derived from the critical dry aerodynamic diameter can be up to ∼ 50 % different from the theoretical κ. In this work, we do additional measurements to obtain dynamic shape factor information and convert the sucrose aerodynamic to volume equivalent diameter. The volume equivalent diameter applied to κ-Köhler theory improves the agreement between measured and theoretical κ. Given the limitations of the coupled AAC–CCN experimental setup, this setup is best used for low-hygroscopicity aerosol (κ≤0.2) CCN measurements. 
    more » « less
  2. Abstract New‐particle formation is important to aerosol–cloud interactions and thus climate, but for newly formed particles to become cloud condensation nuclei, they must grow and avoid scavenging by larger background particles. Whereas ion‐induced new‐particle formation and growth have received attention recently, here we study an opposing effect, blunting the enhancement due to ions, that has received less attention: Small charged particles are scavenged more efficiently due to their charge, and thus their survival probability is lower than that of their neutral counterparts. Through simulations, we show that particle survival is reduced, in some cases dramatically, matching updated theoretical predictions. We also show that the survival of charged particles is enhanced if particles lose their charge via neutralization; therefore, for ion‐induced nucleation to be important, the resulting charged particles must become neutral as soon as possible. Overall, the coagulation scavenging enhancement due to charge ought to lessen the influence of ions in new‐particle formation and growth. 
    more » « less
  3. Abstract Atmospheric aerosol particles impact Earth's radiation balance by acting as seeds for cloud droplet formation. Over half of global cloud seed particles are formed by nucleation, a process where gas‐phase compounds react to form stable particles. Reactions of sulfuric acid (SA) with a wide variety of atmospheric compounds have been previously shown to drive nucleation in the lower troposphere. However, global climate models poorly predict particle nucleation rates since current nucleation models do not describe nucleation for systems containing tens to hundreds of precursor compounds. The nucleation potential model (NPM) was recently developed to model SA nucleation of complex mixtures by measuring an effective base concentration using a 1‐nm condensation particle counter. This technique for estimating particle nucleation rates can be deployed at a much higher spatial and temporal resolution than current methods which require detailed knowledge of all nucleation reactions and measurements, typically using a mass spectrometer, of all nucleation precursor gases. This work expands NPM by showing that this model can capture enhancement and suppression of SA nucleation rates within a complex mixture of organic and inorganic acids, ambient air, and across a range of atmospherically relevant relative humidities. In addition, an expression for calculating atmospheric nucleation rates was also derived from the NPM. Ultimately, NPM provides a simple way to measure and model the extent compounds in a complex mixture enhance SA nucleation rates using a condensation particle counter. 
    more » « less
  4. Abstract Atmospheric aerosols are complex mixtures of different chemical species, and individual particles exist in many different shapes and morphologies. Together, these characteristics contribute to the aerosol mixing state. This review provides an overview of measurement techniques to probe aerosol mixing state, discusses how aerosol mixing state is represented in atmospheric models at different scales, and synthesizes our knowledge of aerosol mixing state's impact on climate‐relevant properties, such as cloud condensation and ice nucleating particle concentrations, and aerosol optical properties. We present these findings within a framework that defines aerosol mixing state along with appropriate mixing state metrics to quantify it. Future research directions are identified, with a focus on the need for integrating mixing state measurements and modeling. 
    more » « less
  5. Combustion is one of the major contributors to air pollution and Condensation Particle Counters (CPCs) provide effective monitoring of atmospheric aerosols since they can detect both charged and neutral materials in low number concentrations. The detection efficiency of any CPC for materials smaller than 5nm requires ad-hoc calibrations because it is affected by the analyte’s size, shape, charge state, composition, and wettability by the condensing fluid. This study characterizes a Water-based CPC (WCPC) prototype for the detection of the naturally charged carbonaceous products of an incipiently sooting laminar premixed flame. The WCPC can activate condensation growth and (50% efficient) detection of hydrophobic flame-formed carbonaceous materials naturally charged in positive and negative polarities with mobility diameters as small as 4.3nm and 4.8 nm, respectively. The addition of a simple Di-Ethylene Glycol (DEG) saturator inlet enhances the 50% detection cutoff to mobility diameters as small as 1.8 nm or 1.6nm for materials charged in positive or negative polarity, respectively. The coupling of the DEG saturator inlet to the WCPC creates a new DEG-WCPC instrument able to detect efficiently both hydrophobic and hydrophilic sub-5nm aerosols with a marginal increase in manufacturing cost (<10%), dimensions, and weight (<0.25 kg). 
    more » « less