Abstract Gene duplication is a source of evolutionary novelty. DNA methylation may play a role in the evolution of duplicate genes (paralogs) through its association with gene expression. While this relationship has been examined to varying extents in a few individual species, the generalizability of these results at either a broad phylogenetic scale with species of differing duplication histories or across a population remains unknown. We applied a comparative epigenomic approach to 43 angiosperm species across the phylogeny and a population of 928 Arabidopsis (Arabidopsis thaliana) accessions, examining the association of DNA methylation with paralog evolution. Genic DNA methylation was differentially associated with duplication type, the age of duplication, sequence evolution, and gene expression. Whole-genome duplicates were typically enriched for CG-only gene body methylated or unmethylated genes, while single-gene duplications were typically enriched for non-CG methylated or unmethylated genes. Non-CG methylation, in particular, was a characteristic of more recent single-gene duplicates. Core angiosperm gene families were differentiated into those which preferentially retain paralogs and “duplication-resistant” families, which convergently reverted to singletons following duplication. Duplication-resistant families that still have paralogous copies were, uncharacteristically for core angiosperm genes, enriched for non-CG methylation. Non-CG methylated paralogs had higher rates of sequence evolution, higher frequency of presence–absence variation, and more limited expression. This suggests that silencing by non-CG methylation may be important to maintaining dosage following duplication and be a precursor to fractionation. Our results indicate that genic methylation marks differing evolutionary trajectories and fates between paralogous genes and have a role in maintaining dosage following duplication.
more »
« less
Dosage-sensitivity shapes how genes transcriptionally respond to allopolyploidy and homoeologous exchange in resynthesized Brassica napus
The gene balance hypothesis proposes that selection acts on the dosage (i.e. copy number) of genes within dosage-sensitive portions of networks, pathways, and protein complexes to maintain balanced stoichiometry of interacting proteins, because perturbations to stoichiometric balance can result in reduced fitness. This selection has been called dosage balance selection. Dosage balance selection is also hypothesized to constrain expression responses to dosage changes, making dosage-sensitive genes (those encoding members of interacting proteins) experience more similar expression changes. In allopolyploids, where whole-genome duplication involves hybridization of diverged lineages, organisms often experience homoeologous exchanges that recombine, duplicate, and delete homoeologous regions of the genome and alter the expression of homoeologous gene pairs. Although the gene balance hypothesis makes predictions about the expression response to homoeologous exchanges, they have not been empirically tested. We used genomic and transcriptomic data from 6 resynthesized, isogenic Brassica napus lines over 10 generations to identify homoeologous exchanges, analyzed expression responses, and tested for patterns of genomic imbalance. Groups of dosage-sensitive genes had less variable expression responses to homoeologous exchanges than dosage-insensitive genes, a sign that their relative dosage is constrained. This difference was absent for homoeologous pairs whose expression was biased toward the B. napus A subgenome. Finally, the expression response to homoeologous exchanges was more variable than the response to whole-genome duplication, suggesting homoeologous exchanges create genomic imbalance. These findings expand our knowledge of the impact of dosage balance selection on genome evolution and potentially connect patterns in polyploid genomes over time, from homoeolog expression bias to duplicate gene retention.
more »
« less
- Award ID(s):
- 2029959
- PAR ID:
- 10479128
- Editor(s):
- Bomblies, K
- Publisher / Repository:
- Genetics
- Date Published:
- Journal Name:
- GENETICS
- Volume:
- 225
- Issue:
- 1
- ISSN:
- 1943-2631
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The duplication of genes has long been recognized as a substrate for evolutionary novelty and adaptation, but the factors that govern fixation of paralogs soon after duplication are only partially understood. Duplication often leads to an increase in gene dosage, or the amount of functional gene product. For genes with which an increased dosage is harmful (i.e., triplosensitive genes), a dosage balancing mechanism needs to be present immediately after duplication if it is to evade negative selection. Previous research in vertebrates has demonstrated a potential role for epigenetic factors in allowing triplosensitive genes to increase in copy number by regulating their expression post-duplication. Here we expand this research by investigating the epigenetic landscape of duplicate genes inD. discoideum, a basal lineage separated from humans by over a billion years. We found that activating histone modifications are quickly lost in duplicate genes before gradually increasing in enrichment as paralogs age. For the repressive modification H3K9me3, we found it was enriched in the youngest paralogs, and that this enrichment was likely mediated by heterochromatin spread from transposable elements. We similarly found enrichment of H3K9me3 in young human duplicates, and again found transposable elements as a potential mediator. Finally, we leveraged recent genome-wide estimates of triplosensitivity in human genes to directly examine the relationship between this kind of dosage sensitivity and enrichment for repressive histone modifications. Interestingly, while we found no significant link between enrichment for the repressive mark H3K9me3 and triplosensitivity in human paralogs, we did find a significant association between triplosensitivity and transposon proximity. Our findings suggest that transposons may contribute to the epigenetic regulatory environment associated with dosage balancing of young duplicates in both protists and humans.more » « less
-
Abstract Teff (Eragrostis tef) is a cornerstone of food security in the Horn of Africa, where it is prized for stress resilience, grain nutrition, and market value. Here, we report a chromosome-scale assembly of allotetraploid teff (variety Dabbi) and patterns of subgenome dynamics. The teff genome contains two complete sets of homoeologous chromosomes, with most genes maintaining as syntenic gene pairs. TE analysis allows us to estimate that the teff polyploidy event occurred ~1.1 million years ago (mya) and that the two subgenomes diverged ~5.0 mya. Despite this divergence, we detect no large-scale structural rearrangements, homoeologous exchanges, or biased gene loss, in contrast to many other allopolyploids. The two teff subgenomes have partitioned their ancestral functions based on divergent expression across a diverse expression atlas. Together, these genomic resources will be useful for accelerating breeding of this underutilized grain crop and for fundamental insights into polyploid genome evolution.more » « less
-
Abstract Duplicated genes provide the opportunity for evolutionary novelty and adaptive divergence. In many cases, having more gene copies increases gene expression, which might facilitate adaptation to stressful or novel environments. Conversely, overexpression or misexpression of duplicated genes can be detrimental and subject to negative selection. In this scenario, newly duplicate genes may evade purifying selection if they are epigenetically silenced, at least temporarily, leading them to persist in populations as copy number variations (CNVs). In animals and plants, younger gene duplicates tend to have higher levels of DNA methylation and lower levels of gene expression, suggesting epigenetic regulation could promote the retention of gene duplications via expression repression or silencing. Here, we test the hypothesis that DNA methylation variation coincides with young duplicate genes that are segregating as CNVs in six populations of the three‐spined stickleback that span a salinity gradient from 4 to 30 PSU. Using reduced‐representation bisulfite sequencing, we found DNA methylation and CNV differentiation outliers rarely overlapped. Whereas lineage‐specific genes and young duplicates were found to be highly methylated, just two gene CNVs showed a significant association between promoter methylation level and copy number, suggesting that DNA methylation might not interact with CNVs in our dataset. If most new duplications are regulated for dosage by epigenetic mechanisms, our results do not support a strong contribution from DNA methylation soon after duplication. Instead, our results are consistent with a preference to duplicate genes that are already highly methylated.more » « less
-
Piganeau, Gwenael (Ed.)Abstract Numerous factors shape the evolution of protein-coding genes, including shifts in the strength or type of selection following gene duplications or changes in the environment. Diatoms and other silicifying organisms use a family of silicon transporters (SITs) to import dissolved silicon from the environment. Freshwaters contain higher silicon levels than oceans, and marine diatoms have more efficient uptake kinetics and less silicon in their cell walls, making them better competitors for a scarce resource. We compiled SITs from 37 diatom genomes to characterize shifts in selection following gene duplications and marine–freshwater transitions. A deep gene duplication, which coincided with a whole-genome duplication, gave rise to two gene lineages. One of them (SIT1–2) is present in multiple copies in most species and is known to actively import silicon. These SITs have evolved under strong purifying selection that was relaxed in freshwater taxa. Episodic diversifying selection was detected but not associated with gene duplications or habitat shifts. In contrast, genes in the second SIT lineage (SIT3) were present in just half the species, the result of multiple losses. Despite conservation of SIT3 in some lineages for the past 90–100 million years, repeated losses, relaxed selection, and low expression highlighted the dispensability of SIT3, consistent with a model of deterioration and eventual loss due to relaxed selection on SIT3 expression. The extensive but relatively balanced history of duplications and losses, together with paralog-specific expression patterns, suggest diatoms continuously balance gene dosage and expression dynamics to optimize silicon transport across major environmental gradients.more » « less