skip to main content


Title: Semi-Supervised Autoencoder With Joint Loss Learning for Bearing Fault Detection
Abstract

Timely and accurate bearing fault detection plays an important role in various industries. Data-driven deep learning methods have recently become a prevailing approach for bearing fault detection. Despite the success of deep learning, fault diagnosis performance is hinged upon the size of labeled data, the acquisition of which oftentimes is expensive in actual practice. Unlabeled data, on the other hand, are inexpensive. To fully utilize a large amount of unlabeled data together with limited labeled data to enhance fault detection performance, in this research, we develop a semi-supervised learning method built upon the autoencoder. In this method, a joint loss is established to account for the effects of both the labeled and unlabeled data, which is subsequently used to direct the backpropagation training. Systematic case studies using the Case Western Reserve University (CWRU) rolling bearing dataset are carried out, in which the effectiveness of this new method is verified by comparing it with other benchmark models.

 
more » « less
Award ID(s):
2138522
NSF-PAR ID:
10479146
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Society of Mechanical Engineers
Date Published:
ISBN:
978-0-7918-8740-0
Format(s):
Medium: X
Location:
Boston, Massachusetts, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Rolling bearing is a critical component of machinery that has been widely applied in manufacturing, transportation, aerospace, and power and energy industries. The timely and accurate bearing fault detection thus is of vital importance. Computational data-driven deep learning has recently become a prevailing approach for bearing fault detection. Despite the progress of the deep learning approach, the deep learning performance is hinged upon the size of labeled data, the acquisition of which is expensive in actual implementation. Unlabeled data, on the other hand, are inexpensive. In this research, we develop a new semi-supervised learning method built upon the autoencoder to fully utilize a large amount of unlabeled data together with limited labeled data to enhance fault detection performance. Compared with the state-of-the-art semi-supervised learning methods, this proposed method can be more conveniently implemented with fewer hyperparameters to be tuned. In this method, a joint loss is established to account for the effects of labeled and unlabeled data, which is subsequently used to direct the backpropagation training. Systematic case studies using the Case Western Reserve University (CWRU) rolling bearing dataset are carried out, in which the effectiveness of this new method is verified by comparing it with other well-established baseline methods. Specifically, nearly all emulation runs using the proposed methodology can lead to around 2%–5% accuracy increase, indicating its robustness in performance enhancement.

     
    more » « less
  2. Fault diagnosis of rolling bearings becomes an important research subject, where the data-driven deep learning-based techniques have been extensively exploited. While the state-of-the-art research has shown the substantial progresses in bearing fault diagnosis, they mostly were implemented upon the hypothesis that the location of bearing prone to failure already is known. Nevertheless, in actual practice many rolling bearings are installed in a complex machinery system, any of which is likely subject to fault. As such, fault diagnosis essentially is a process to achieve both fault localization and identification, which results in many fault scenarios to be handled. This will significantly degrade the fault diagnosis performance using conventional deep learning analysis. In this research, we aim to develop a new deep learning framework to address abovementioned challenge. We particularly design a hierarchical deep learning framework consisting of multiple sequentially deployed deep learning models built upon the transfer learning. This can improve the learning adequacy for a high-dimensional problem with many fault scenarios involved even under limited dataset, thereby enhancing the fault diagnosis performance. Without the prior knowledge regarding the fault location, this methodology is greatly favored by the sensor/data fusion which takes full advantage of the enriched pivot fault-related features in the measurements acquired from different accelerometers. Systematic case studies using the publicly accessible experimental rolling bearing dataset are carried out to validate this new methodology. 
    more » « less
  3. Early detection of incipient faults is of vital im- portance to reducing maintenance costs, saving energy, and enhancing occupant comfort in buildings. Popular supervised learning models such as deep neural networks are considered promising due to their ability to directly learn from labeled fault data; however, it is known that the performance of supervised learning approaches highly relies on the availability and quality of labeled training data. In Fault Detection and Diagnosis (FDD) applications, the lack of labeled incipient fault data has posed a major challenge to applying these supervised learning techniques to commercial buildings. To overcome this challenge, this paper proposes using Monte Carlo dropout (MC-dropout) to enhance the supervised learning pipeline, so that the resulting neural network is able to detect and diagnose unseen incipient fault examples. We also examine the proposed MC-dropout method on the RP-1043 dataset to demonstrate its effectiveness in indicating the most likely incipient fault types. 
    more » « less
  4. Early detection of incipient faults is of vital im- portance to reducing maintenance costs, saving energy, and enhancing occupant comfort in buildings. Popular supervised learning models such as deep neural networks are considered promising due to their ability to directly learn from labeled fault data; however, it is known that the performance of supervised learning approaches highly relies on the availability and quality of labeled training data. In Fault Detection and Diagnosis (FDD) applications, the lack of labeled incipient fault data has posed a major challenge to applying these supervised learning techniques to commercial buildings. To overcome this challenge, this paper proposes using Monte Carlo dropout (MC-dropout) to enhance the supervised learning pipeline, so that the resulting neural network is able to detect and diagnose unseen incipient fault examples. We also examine the proposed MC-dropout method on the RP-1043 dataset to demonstrate its effectiveness in indicating the most likely incipient fault types. 
    more » « less
  5. Abstract

    The fault diagnosis of bearing in machinery system plays a vital role in ensuring the normal operating performance of system. Machine learning-based fault diagnosis using vibration measurement recently has become a prevailing approach, which aims at identifying the fault through exploring the correlation between the measurement and respective fault. Nevertheless, such correlation will become very complex for the practical scenario where the system is operated under time-varying conditions. To fulfill the reliable bearing fault diagnosis under time-varying condition, this study presents a tailored deep learning model, so called deep long short-term memory (LSTM) network. By fully exploiting the strength of this model in characterizing the temporal dependence of time-series vibration measurement, the negative consequence of time-varying conditions can be minimized, thereby improving the diagnosis performance. The published bearing dataset with various time-varying operating speeds is utilized in case illustrations to validate the effectiveness of proposed methodology.

     
    more » « less