skip to main content


Title: The GBT Diffuse Ionized Gas Survey (GDIGS): Discrete Sources
Abstract

The Green Bank Telescope Diffuse Ionized Gas Survey (GDIGS) traces ionized gas in the Galactic midplane by observing radio recombination line (RRL) emission from 4 to 8 GHz. The nominal survey zone is 32.°3 >> −5°, ∣b∣ < 0.°5. Here, we analyze GDIGS Hnαionized gas emission toward discrete sources. Using GDIGS data, we identify the velocity of 35 Hiiregions that have multiple detected RRL velocity components. We identify and characterize RRL emission from 88 Hiiregions that previously lacked measured ionized gas velocities. We also identify and characterize RRL emission from eight locations that appear to be previously unidentified Hiiregions and 30 locations of RRL emission that do not appear to be Hiiregions based on their lack of mid-infrared emission. This latter group may be a compact component of the Galactic Diffuse Ionized Gas. There are an additional 10 discrete sources that have anomalously high RRL velocities for their locations in the Galactic plane. We compare these objects’ RRL data to13CO, Hi,and mid-infrared data, and find that these sources do not have the expected 24μm emission characteristic of Hiiregions. Based on this comparison we do not think these objects are Hiiregions, but we are unable to classify them as a known type of object.

 
more » « less
Award ID(s):
1714688
NSF-PAR ID:
10479334
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
959
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 110
Size(s):
["Article No. 110"]
Sponsoring Org:
National Science Foundation
More Like this
  1. The Green Bank Telescope (GBT) Diffuse Ionized Gas Survey (GDIGS) traces ionized gas in the Galactic midplane by observing radio recombination line (RRL) emission from 4–8 GHz. The nominal survey zone is 32.3° > l > -5°, |b| < 0.5°. Here, we analyze GDIGS Hnα ionized gas emission toward discrete sources with sizes comparable to the 2.065' GDIGS Hnα beam. We use GDIGS data to identify the correct velocity of 39 H II regions that have multiple RRL velocity components. We identify and characterize RRL emission from 88 H II regions that previously lacked measured ionized gas velocities. We additionally identify and characterize RRL emission from eight locations that appear to be previously-unidentified H II regions and 41 locations of RRL emission that do not appear to be H II regions based on their lack of mid-infrared emission. We identify 10 discrete sources that have anomalously high RRL velocities for their locations in the Galactic plane and we compare the objects’ RRL data to 13CO, H I and mid-infrared data. These sources do not have the expected 24 μm emission characteristic of H II regions. Based on this comparison we do not think these objects are H II regions, but we are unable to classify them as a known type of object. 
    more » « less
  2. Abstract

    We present early results from the CO Mapping Array Project (COMAP) Galactic Plane Survey conducted between 2019 June and 2021 April, spanning 20° << 40° in Galactic longitude and ∣b∣ < 1.°5 in Galactic latitude with an angular resolution of 4.′5. We present initial results from the first part of the survey, including the diffuse emission and spectral energy distributions of Hiiregions and supernova remnants (SNRs). Using low- and high-frequency surveys to constrain free–free and thermal dust emission contributions, we find evidence of excess flux density at 30 GHz in six regions, which we interpret as anomalous microwave emission. Furthermore we model ultracompact Hiicontributions using data from the 5 GHz CORNISH catalog and reject these as the cause of the 30 GHz excess. Six known SNRs are detected at 30 GHz, and we measure spectral indices consistent with the literature or show evidence of steepening. The flux density of the SNR W44 at 30 GHz is consistent with a power-law extrapolation from lower frequencies with no indication of spectral steepening in contrast with recent results from the Sardinia Radio Telescope. We also extract five hydrogen radio recombination lines (RRLs) to map the warm ionized gas, which can be used to estimate electron temperatures or to constrain continuum free–free emission. The full COMAP Galactic Plane Survey, to be released in 2023/2024, will span∼ 20°–220° and will be the first large-scale radio continuum and RRL survey at 30 GHz with 4.′5 resolution.

     
    more » « less
  3. Kinematic distance determinations are complicated by a kinematic distance ambiguity (KDA) within the Solar orbit. For an axisymmetric Galactic rotation model, two distances, a "near" and "far" distance, have the same radial velocity. Formaldehyde (H2CO) absorption measurements have been used to resolve the KDA toward Galactic HII regions. This method relies on the detection of H2CO absorption against the broadband radio continuum emission from HII regions. H2CO absorption at velocities between the HII region velocity and the maximum velocity along the line of sight (the tangent point velocity) implies that the HII region lies at the far kinematic distance whereas a lack of absorption implies that it lies at the near kinematic distance. The reliability of KDA resolutions using H2CO is unclear, however, as disagreements between distances derived using H2CO absorption and those derived using other methods are common. Here we use new H2CO and radio recombination line data from the Green Bank Telescope (GBT) Diffuse Ionized Gas Survey (GDIGS) to test whether H2CO absorption measurements can accurately resolve the KDA for 44 Galactic HII regions that have known distances from maser parallax measurements. For each of the 44 HII regions we determine whether the parallax distance is consistent with either the near or the far kinematic distance. We find that the Galactic distribution of H2CO is too sparse to reliably determine whether an HII region is at its near kinematic distance. The H2CO method also incorrectly resolves the KDA for 80% of HII regions that it places at the far kinematic distance; in such cases H2CO absorption may be caused by other sources of radio continuum emission (possibly the CMB, diffuse free-free, or synchrotron). Our results indicate that the H2CO method is unsuitable to resolve the KDA toward Galactic HII regions. 
    more » « less
  4. Abstract

    The Sloan Digital Sky Survey MaNGA program has now obtained integral field spectroscopy for over 10,000 galaxies in the nearby universe. We use the final MaNGA data release DR17 to study the correlation between ionized gas velocity dispersion and galactic star formation rate, finding a tight correlation in whichσHαfrom galactic Hiiregions increases significantly from ∼18–30 km s−1, broadly in keeping with previous studies. In contrast,σHαfrom diffuse ionized gas increases more rapidly from 20–60 km s−1. Using the statistical power of MaNGA, we investigate these correlations in greater detail using multiple emission lines and determine that the observed correlation ofσHαwith local star formation rate surface density is driven primarily by the global relation of increasing velocity dispersion at higher total star formation rate, as are apparent correlations with stellar mass. Assuming Hiiregion models consistent with our finding thatσ[OIII]<σHα<σ[O I], we estimate the velocity dispersion of the molecular gas in which the individual Hiiregions are embedded, finding valuesσMol= 5–30 km s−1consistent with ALMA observations in a similar mass range. Finally, we use variations in the relation with inclination and disk azimuthal angle to constrain the velocity dispersion ellipsoid of the ionized gasσz/σr= 0.84 ± 0.03 andσϕ/σr= 0.91 ± 0.03, similar to that of young stars in the Galactic disk. Our results are most consistent with the theoretical models in which turbulence in modern galactic disks is driven primarily by star formation feedback.

     
    more » « less
  5. Abstract

    We present new JWST NIRSpec integral field spectroscopy (IFS) data for the luminous infrared galaxy NGC 7469, a nearby (70.6 Mpc) active galaxy with a Seyfert 1.5 nucleus that drives a highly ionized gas outflow and a prominent nuclear star-forming ring. Using the superb sensitivity and high spatial resolution of the JWST instrument NIRSpec IFS, we investigate the role of the Seyfert nucleus in the excitation and dynamics of the circumnuclear gas. Our analysis focuses on the [Feii], H2, and hydrogen recombination lines that trace the radiation/shocked-excited molecular and ionized interstellar medium around the active galactic nucleus (AGN). We investigate gas excitation through H2/Brγand [Feii]/Paβemission line ratios and find that photoionization by the AGN dominates within the central 300 pc of the galaxy except in a small region that shows signatures of shock-heated gas; these shock-heated regions are likely associated with a compact radio jet. In addition, the velocity field and velocity dispersion maps reveal complex gas kinematics. Rotation is the dominant feature, but we also identify noncircular motions consistent with gas inflows as traced by the velocity residuals and the spiral pattern in the Paαvelocity dispersion map. The inflow is 2 orders of magnitude higher than the AGN accretion rate. The compact nuclear radio jet has enough power to drive the highly ionized outflow. This scenario suggests that the inflow and outflow are in a self-regulating feeding–feedback process, with a contribution from the radio jet helping to drive the outflow.

     
    more » « less