Although detrimental genetic processes are known to adversely affect the viability of populations, little is known about how detrimental genetic processes in a keystone species can affect the functioning of ecosystems. Here, we assessed how changes in the genetic characteristics of a keystone predator, grey wolves, affected the ecosystem of Isle Royale National Park over two decades. Changes in the genetic characteristic of the wolf population associated with a genetic rescue event, followed by high levels of inbreeding, led to a rise and then fall in predation rates on moose, the primary prey of wolves and dominant mammalian herbivore in this system. Those changes in predation rate led to large fluctuations in moose abundance, which in turn affected browse rates on balsam fir, the dominant forage for moose during winter and an important boreal forest species. Thus, forest dynamics can be traced back to changes in the genetic characteristics of a predator population.
Island ecosystems provide natural laboratories to assess the impacts of isolation on population persistence. However, most studies of persistence have focused on a single species, without comparisons to other organisms they interact with in the ecosystem. The case study of moose and gray wolves on Isle Royale allows for a direct contrast of genetic variation in isolated populations that have experienced dramatically differing population trajectories over the past decade. Whereas the Isle Royale wolf population recently declined nearly to extinction due to severe inbreeding depression, the moose population has thrived and continues to persist, despite having low genetic diversity and being isolated for ∼120 years. Here, we examine the patterns of genomic variation underlying the continued persistence of the Isle Royale moose population. We document high levels of inbreeding in the population, roughly as high as the wolf population at the time of its decline. However, inbreeding in the moose population manifests in the form of intermediate-length runs of homozygosity suggestive of historical inbreeding and purging, contrasting with the long runs of homozygosity observed in the smaller wolf population. Using simulations, we confirm that substantial purging has likely occurred in the moose population. However, we also document notable increases in genetic load, which could eventually threaten population viability over the long term. Overall, our results demonstrate a complex relationship between inbreeding, genetic diversity, and population viability that highlights the use of genomic datasets and computational simulation tools for understanding the factors enabling persistence in isolated populations.
more » « less- Award ID(s):
- 1939399
- NSF-PAR ID:
- 10479407
- Editor(s):
- Nielsen, Rasmus
- Publisher / Repository:
- Oxford Academic
- Date Published:
- Journal Name:
- Molecular Biology and Evolution
- Volume:
- 40
- Issue:
- 2
- ISSN:
- 0737-4038
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Statistical inferences about inbreeding depression are often derived from analyses with low power and a high risk of failing to detect inbreeding depression. That risk is widely appreciated by scientists familiar with the relevant statistical and genetical theory, but may be overlooked and underappreciated by decision-makers. Consequently, there is value in demonstrating this risk using a real example. We use data from the wolf population on Isle Royale to demonstrate the difficulty of making reliable statistical inferences about inbreeding depression. This wolf population is known—by other methods—to have gone effectively extinct due to deleterious genetic processes associated with inbreeding. Beyond that demonstration, we use two case-studies—wolves on Isle Royale and vaquita (porpoises) from the Gulf of California, Mexico—to show how statistical inferences about inbreeding depression can affect conservation decisions. According to most decision theory, decisions depend importantly on: 1) probabilities that certain states exist (e.g. inbreeding depression is present) and 2) the utility assigned to various outcomes (e.g. the value of acting to mitigate inbreeding when it is present). The probabilities are provided by statistical inference; whereas utilities are almost entirely determined by normative values and judgements. Our analysis suggests that decisions to mitigate inbreeding depression are often driven more by utilities (normative values) than probabilities (statistical inferences). As such, advocates for mitigating inbreeding depression will benefit from better communicating to decision-makers the value of populations persisting and the extent to which decisions should depend on normative values.
-
Abstract Theory predicts that threatened species living in small populations will experience high levels of inbreeding that will increase their genetic load, but recent work suggests that the impact of load may be minimized by purging resulting from long‐term population bottlenecks. Empirical studies that examine this idea using genome‐wide estimates of inbreeding and genetic load in threatened species are limited. Here we use individual genome resequencing data to compare levels of inbreeding, levels of genetic load (estimated as mutation load) and population history in threatened Eastern massasauga rattlesnakes (
Sistrurus catenatus ), which exist in small isolated populations, and closely related yet outbred Western massasauga rattlesnakes (Sistrurus tergeminus ). In terms of inbreeding,S .catenatus genomes had a greater number of runs of homozygosity of varying sizes, indicating sustained inbreeding through repeated bottlenecks when compared toS .tergeminus . At the species level, outbredS .tergeminus had higher genome‐wide levels of mutation load in the form of greater numbers of derived deleterious mutations compared toS .catenatus , presumably due to long‐term purging of deleterious mutations inS .catenatus . In contrast, mutations that escaped species‐level drift effects withinS .catenatus populations were in general more frequent and more often found in homozygous genotypes than inS .tergeminus , suggesting a reduced efficiency of purifying selection in smallerS .catenatus populations for most mutations. Our results support an emerging idea that the historical demography of a threatened species has a significant impact on the type of genetic load present, which impacts implementation of conservation actions such as genetic rescue. -
Abstract Pumas are the most widely distributed felid in the Western Hemisphere. Increasingly, however, human persecution and habitat loss are isolating puma populations. To explore the genomic consequences of this isolation, we assemble a draft puma genome and a geographically broad panel of resequenced individuals. We estimate that the lineage leading to present-day North American pumas diverged from South American lineages 300–100 thousand years ago. We find signatures of close inbreeding in geographically isolated North American populations, but also that tracts of homozygosity are rarely shared among these populations, suggesting that assisted gene flow would restore local genetic diversity. The genome of a Florida panther descended from translocated Central American individuals has long tracts of homozygosity despite recent outbreeding. This suggests that while translocations may introduce diversity, sustaining diversity in small and isolated populations will require either repeated translocations or restoration of landscape connectivity. Our approach provides a framework for genome-wide analyses that can be applied to the management of similarly small and isolated populations.
-
Enard, David (Ed.)Abstract High-quality reference genomes are fundamental tools for understanding population history, and can provide estimates of genetic and demographic parameters relevant to the conservation of biodiversity. The federally endangered Pacific pocket mouse (PPM), which persists in three small, isolated populations in southern California, is a promising model for studying how demographic history shapes genetic diversity, and how diversity in turn may influence extinction risk. To facilitate these studies in PPM, we combined PacBio HiFi long reads with Omni-C and Hi-C data to generate a de novo genome assembly, and annotated the genome using RNAseq. The assembly comprised 28 chromosome-length scaffolds (N50 = 72.6 MB) and the complete mitochondrial genome, and included a long heterochromatic region on chromosome 18 not represented in the previously available short-read assembly. Heterozygosity was highly variable across the genome of the reference individual, with 18% of windows falling in runs of homozygosity (ROH) >1 MB, and nearly 9% in tracts spanning >5 MB. Yet outside of ROH, heterozygosity was relatively high (0.0027), and historical Ne estimates were large. These patterns of genetic variation suggest recent inbreeding in a formerly large population. Currently the most contiguous assembly for a heteromyid rodent, this reference genome provides insight into the past and recent demographic history of the population, and will be a critical tool for management and future studies of outbreeding depression, inbreeding depression, and genetic load.more » « less