skip to main content


Title: A CROSS-SECTIONAL STUDY ON THE PREVALENCE OF IMPOSTOR PHENOMENON IN ENGINEERING STUDENTS
percentage of the population in this age group attend institutes of higher education during these critical years. Hence, colleges are well positioned to provide the appropriate support structures to create a positive effect on mental health. Undiagnosed mental health issues may have long-term detrimental effects on academic, professional, and social life. This paper investigates the prevalence of one such psychological condition, Impostor Phenomenon (IP), that can have a negative impact on the overall mental wellbeing of engineering students. IP is widely experienced by people from various backgrounds and socioeconomic status. While having high levels of IP does not necessarily translate to poor work performance, it can result in anxiety, depression, and dissatisfaction with life. Even though IP prevalence has been measured in various majors via the use of surveys, the data within engineering is sparse, despite it being one of the most competitive and stressful fields. For the current study, engineering students from freshman, sophomore, junior, and senior academic levels were surveyed using the Clance Impostor Phenomenon Survey; such a wide cross-sectional study in engineering is rate in the United States. A total of 184 students completed the anonymous survey voluntarily. Results indicate that our engineering students suffer from borderline moderate to frequent IP feelings (59.8 < IP < 67.4). The data was further analyzed by academic standing and gender. There was no significant increase or decrease in IP levels across the various academic standings except for seniors. Senior students demonstrated higher IP levels than juniors. Overall, female engineering students showed a higher level of IP prevalence compared to their male counterparts. The trifactor analysis indicated that fake in comparison to the other factors (discount and luck) is the most prevalent among the students irrespective of their class standing.  more » « less
Award ID(s):
2030615
NSF-PAR ID:
10479414
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
International Technology, Education and Development Conference
Date Published:
Journal Name:
International Academy of Technology, Education and Development
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    CONTEXT With the onset of the COVID-19 pandemic, and the resulting response from universities, engineering students find themselves in an unprecedented situation. In addition to stressors related to the curriculum, residential students across the United States are being asked to relocate away from campus and engage in distance learning. At the same time, social distancing requirements are limiting students’ ability to socialize, procure food and supplies, exercise, and remain employed and financially solvent. Some students will fall ill while others face the prospect of sick family members, and even deaths in the family. Prior research suggests that individuals living through this pandemic are likely to face stress, uncertainty, and fear that affects their mental health and academic performance for years to come. PURPOSE OR GOAL The purpose of this study was to understand the ways in which the COVID-19 pandemic is affecting engineering students’ mental wellness, specifically stress, and how the effects differ for different groups of students. The research questions addressed are: 1) What effects has the pandemic had on baseline stress levels, and how do those vary by demographic group? 2) What effects has the pandemic had on quality of life, such as sleep habits and financial security, and how do those vary by demographic group? METHODS An online survey was conducted in the United States in May and June of 2020. More than 800 4-year engineering students who represented many engineering disciplines and universities responded. The survey used a modified version of the Holmes-Rahe Social Readjustment Rating Scale, which is a widely used and validated instrument to measure the effects of certain life events on stress. The data was analysed to determine the average increase in stress levels for students resulting from COVID-19, and which demographic groups have seen the most negative impact. We also report on which stress-inducing life-events were experienced most. OUTCOMES Latinx individuals and international students report statistically significantly higher levels of stress than the baseline population. Engineering students from other historically excluded identities, however,are not facing statistically significantly worse stress than their peers from historically over represented identities. Veterans fare better than the majority population on this metric.The data also indicates that different groups are more likely to experience different negative life-events because of COVID. CONCLUSIONS No previous research has examined the impacts of a global pandemic on engineering student stress and mental wellness. Our findings show that stress and mental wellness need to be understood intersectionally and that some underrepresented groups are disproportionately impacted by COVID-19. Understanding the impacts on students can help universities strategize and allocate limited resources most effectively to support student success. KEYWORDS Mental wellness; COVID-19; stress 
    more » « less
  2. null (Ed.)
    The value of internship experiences for engineering students is widely discussed in the literature. With this analysis, we seek to contribute knowledge addressing 1) the prevalence of internship experiences amongst engineering students drawn from a large, multi-institutional, nationally-representative sample, 2) if the likelihood of having an engineering internship experiences is equitable amongst various student identities, and 3) what additional factors influence the likelihood of a student having an internship experience, such as field of study and institution type. Data were drawn from a 2015 multi-institutional nationally representative survey of engineering juniors and seniors, excluding one institution with a mandatory co-op program (n = 5530 from 26 institutions). A z-test was used to analyze differences in internship participation rates related to academic cohort (e.g., junior, senior), gender, underrepresented minority (URM) status, first-generation, and low-income status, as well as a subset of identities at the intersection of these groups (gender + URM; first-generation + low-income). A logistic regression model further examined factors such as GPA, engineering task self-efficacy, field of engineering, and institution type. We found that amongst the students in our dataset, 64.7% of the seniors had “worked in a professional engineering environment as an intern/co-op” (41.1% of juniors, 64.7% of 5th years). Significantly less likely (p<0.05) to have internship experiences were men compared to women (52.9% vs 58.3%), URM students compared to their majority counterparts (41.5% vs 56.8%), first-generation students compared to continuing (47.6% vs 57.2%), and low-income students compared to higher-income peers (46.2% vs 57.4%). Examined intersectional identities significantly less likely to have an internship were URM men (37.5%) and first-generation low-income students (42.0%), while non-URM women (60.5%) and continuing high-income students (58.2%) were most likely to report having an internship. Results from the logistic regression model indicate that significant factors are cohort (junior vs senior), GPA, engineering task self-efficacy, and engineering field. When controlling for the other variables in the model, gender, URM, first-generation, and low-income status remain significant; however, the interaction effect between these identities is not significant in the full model. Institution type did not have much impact. Having a research experience was not a significant factor in predicting the likelihood of having an internship experience, although studying abroad significantly increased the odds. Amongst engineering fields, industrial and civil engineering students were the most likely to have an internship, while aerospace and materials engineering students were the least likely. Full results and discussion will be presented in the paper. This analysis provides valuable information for a variety of stakeholders. For engineering programs, it is useful to benchmark historic students’ rates of internship participation against a multi-institutional, nationally representative dataset. For academic advisors and career services professionals, it is useful to understand in which fields an internship is common to be competitive on the job market, and which fields have fewer opportunities or prioritize research experiences. Ultimately, for those in higher education and workforce development it is vital to understand which identities, and intersectional identities, are accessing internship experiences as a pathway into the engineering workforce. 
    more » « less
  3. This project will contribute to the national need for well-educated scientists, mathematicians, engineers, and technicians by supporting the retention and graduation of high-achieving, low-income students with demonstrated financial need at Minnesota State University, Mankato. Over its six year duration, this project will fund scholarships to 120 unique full-time students who are pursuing Bachelor of Science degrees in engineering. First semester junior, primarily transfer, students at Iron Range Engineering will receive scholarships for one semester. The Iron Range Engineering (IRE) STEM Scholars Program provides a financially sustainable pathway for students across the nation to graduate with an engineering degree and up to two years of industry experience. Students typically complete their first two years of engineering coursework at community colleges across the country. Students then join IRE and spend one transitional semester gaining training and experience to equip them with the technical, design, and professional skills needed to succeed in the engineering workforce. During the last two years of their education, IRE students work in industry, earning an engineering intern salary, while being supported in their technical and professional development by professors, learning facilitators, and their own peers. The IRE STEM Scholars project will provide access to a financially responsible engineering degree for low-income students by financially supporting them during the transitional semester, which has two financial challenges: university tuition costs are higher than their previous community college costs, and the semester occurs before they are able to earn an engineering co-op income. In addition, the project will provide personalized mentorship throughout students’ pathway to graduation, such as weekly conversations with a mentor. By providing these supports, the IRE STEM Scholars project aims to prepare students to be competitive applicants for the engineering workforce with career development and engineering co-op experience. Because community colleges draw relatively representative proportions of students from a variety of backgrounds, this project has the potential to learn how transfer pathways and co-op education can support financially sustainable pathways to engineering degrees for a more diverse group of students and contribute to the development of a diverse, competitive engineering workforce. The overall goal of this project is to increase STEM degree completion of low-income, high-achieving undergraduates with demonstrated financial need. As part of the scope of this project, a concurrent mixed-methods research study will be done on engineering students’ thriving, specifically their identity, belonging, motivation, and overall wellbeing (or mental and physical health). Student outcomes have previously been measured primarily through academic markers such as graduation rates and GPA. In addition to these outcomes, this project explores ways to better support overall student thriving. This study will address the following research questions: How do undergraduate students’ engineering identity and belongingness develop over time in a co-op-based engineering program? How do undergraduate students’ motivation and identity connect to overall wellbeing in a co-op-based engineering program? In the first year of the IRE STEM Scholars Project, initial interview data describe scholars’ sense of belonging in engineering, prior to their first co-op experiences and survey data describe IRE students’ experiences in co-op and overall sense of belonging. Future work will utilize these values to identify ways to better support the IRE STEM scholars’ identity development as they move into their first co-op experiences. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students. 
    more » « less
  4. This research full paper presents screening rates for mental health issues and life-stress events in engineering-focused community college students during the initial phases of the COVID-19 pandemic in the US. Specifically, it attempts to answer the following research questions: 1) What is the overall rate of various mental health conditions among engineering-focused community college students, 2) What effects has the pandemic had on baseline stress levels engineering-focused community college, and 3) What effects has the pandemic had on quality of life, such as sleep habits and financial security of engineering- focused community college students? Data for this paper was collected via survey from May–July 2020 and includes responses from 84 students at 24 community colleges. The survey itself was a compilation of several widely- used instruments for measuring overall mental health and stress levels in a population. These instruments include the Kessler-6 for psychological distress, the PHQ for anxiety, depression, and eating disorders, the PC-PTSD for PTSD-like symptoms, and the SRRS for inventorying stressful life events. Among the major findings, 32% of respondents reported a major change in financial situation, 27% reported loss of employment, and 13% reported ceasing formal schooling because of the COVID-19 pandemic. Additionally, 32% of respondents reported that the COVID-19 pandemic worsened their housing security situation, 38% reported that COVID-19 has worsened their food security situation, and 36% report that COVID-19 has decreased their ability to access instruction, course materials, or course supplies. Finally, of respondents who completed at least one mental health screening instrument, 70% screened positive for at least one potentially diagnosable condition, while only 9% reported ever receiving a mental health diagnosis. Index Terms—Community College, Mental Health, Disability, Accessibility, Equity, Inclusion, Wellness 
    more » « less
  5. Anxiety stemming from the challenges faced by engineering students could be used as a predictor of academic performance. Such anxiety may lead to compromised student self-efficacy manifesting itself as reduced motivation, concentration, or reasoning capability. These symptoms often lead to a loss of confidence in engineering abilities and reduced commitment to engineering degree programs, resulting in lower retention. Various studies have been conducted to analyze the direct effects of both academic and non-academic sources of anxiety in engineering programs such as curriculum requirements, academic readiness (e.g. study skills), personality type, and attitudes toward learning as a means of improving future pedagogical strategies and mitigation of physiological aspects of anxiety. Less common are studies that investigate the efficacy of timely interventions in response to self-reported vulnerabilities and concerns of engineering students. This paper presents data from practical efforts to identify and mitigate anxiety among engineering students. A group of twenty-seven engineering and engineering technology students, who were part of a scholarship program, was asked to submit journal entries in which they reflected on their fears and anxieties related to their participation in their degree program. Prominent themes which emerged from student reflection included time management and its effects on academics and social activities, the likelihood of degree completion and success in engineering-specific coursework (e.g. senior capstone projects), and aspects of life following graduation such as handling accumulated debt and finding a job. As a cohort, the students participated in periodic vertically-integrated discussion groups with faculty mentors and their peers at multiple levels of seniority, and were introduced to university resources designed to address specific student needs. Results of a follow-on survey suggested that peer-to-peer discussions can be useful in alleviating anxiety on particular topics. It was also observed that the interactions facilitated by these group discussions are helpful in developing a sense of community and shared enthusiasm among the cohort. 
    more » « less