Abstract We use a recent census of the Milky Way (MW) satellite galaxy population to constrain the lifetime of particle dark matter (DM). We consider two-body decaying dark matter (DDM) in which a heavy DM particle decays with lifetimeτcomparable to the age of the universe to a lighter DM particle (with mass splittingϵ) and to a dark radiation species. These decays impart a characteristic “kick velocity,”Vkick=ϵc, on the DM daughter particles, significantly depleting the DM content of low-mass subhalos and making them more susceptible to tidal disruption. We fit the suppression of the present-day DDM subhalo mass function (SHMF) as a function ofτandVkickusing a suite of high-resolution zoom-in simulations of MW-mass halos, and we validate this model on new DDM simulations of systems specifically chosen to resemble the MW. We implement our DDM SHMF predictions in a forward model that incorporates inhomogeneities in the spatial distribution and detectability of MW satellites and uncertainties in the mapping between galaxies and DM halos, the properties of the MW system, and the disruption of subhalos by the MW disk using an empirical model for the galaxy–halo connection. By comparing to the observed MW satellite population, we conservatively exclude DDM models withτ< 18 Gyr (29 Gyr) forVkick= 20 kms−1(40 kms−1) at 95% confidence. These constraints are among the most stringent and robust small-scale structure limits on the DM particle lifetime and strongly disfavor DDM models that have been proposed to alleviate the Hubble andS8tensions. 
                        more » 
                        « less   
                    
                            
                            S8 Tension in the Context of Dark Matter–Baryon Scattering
                        
                    
    
            Abstract We explore an interacting dark matter (IDM) model that allows for a fraction of dark matter (DM) to undergo velocity-independent scattering with baryons. In this scenario, structure on small scales is suppressed relative to the cold DM scenario. Using the effective field theory of large-scale structure, we perform the first systematic analysis of BOSS full-shape galaxy clustering data for the IDM scenario, and we find that this model ameliorates theS8tension between large-scale structure and Planck data. Adding theS8prior from the Dark Energy Survey (DES) to our analysis further leads to a mild ∼3σpreference for a nonvanishing DM–baryon scattering cross section, assuming ∼10% of DM is interacting and has a particle mass of 1 MeV. This result produces a modest ∼20% suppression of the linear power atk≲ 1hMpc−1, consistent with other small-scale structure observations. Similar scale-dependent power suppression was previously shown to have the potential to resolveS8tension between cosmological data sets. The validity of the specific IDM model explored here will be critically tested with upcoming galaxy surveys at the interaction level needed to alleviate theS8tension. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2013951
- PAR ID:
- 10479696
- Publisher / Repository:
- The Astrophysical Journal Letters
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 954
- Issue:
- 1
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            A<sc>bstract</sc> We present a new class of interacting dark sector models that can address the Hubble tension. Interacting dark radiation (DR) has previously been put forward as a solution to the problem, but this proposal is disfavored by the high-ℓcosmic microwave background (CMB) data. We modify this basic framework by introducing a subcomponent of dark matter (DM) that interacts strongly with the DR, so that together they constitute a tightly coupled fluid at early times. We show that if this subcomponent decouples from the interacting DR during the CMB epoch, theℓmodes of the CMB that entered the horizon before decoupling are impacted differently from those that entered after, allowing a solution to the problem. We present a model that realizes this framework, which we dub “New Atomic Dark Matter”, or nuADaM, in which the interacting dark matter (iDM) subcomponent is composed of dark atoms, and dark “neutrinos” with long-range interactions contribute to the DR, hence the name of the model. This iDM subcomponent is acoustic at early times but decouples from the DR following dark recombination. In contrast to conventional atomic dark matter (ADM) models, the dark photon is part of a richer DR sector, which ensures that it continues to be self-interacting even after recombination. We show that this model admits a significantly larger value ofH0than ΛCDM when fit to CMB and BAO data, while maintaining a comparable goodness of fit. Once the SHOES data set is included, it provides a significantly better fit than ΛCDM.more » « less
- 
            A bstract We propose a new interacting dark sector model, Stepped Partially Acoustic Dark Matter (SPartAcous), that can simultaneously address the two most important tensions in current cosmological data, the H 0 and S 8 problems. As in the Partially Acoustic Dark Matter (PAcDM) scenario, this model features a subcomponent of dark matter that interacts with dark radiation at high temperatures, suppressing the growth of structure at small scales and thereby addressing the S 8 problem. However, in the SPartAcous model, the dark radiation includes a component with a light mass that becomes non-relativistic close to the time of matter-radiation equality. As this light component annihilates away, the remaining dark radiation heats up and its interactions with dark matter decouple. The heating up of the dark sector results in a step-like increase in the relative energy density in dark radiation, significantly reducing the H 0 tension, while the decoupling of dark matter and dark radiation ensures that the power spectrum at larger scales is identical to ΛCDM.more » « less
- 
            Abstract A phase shift in the acoustic oscillations of cosmic microwave background (CMB) spectra is a characteristic signature for the presence of non-photon radiation propagating differently from photons, even when the radiation couples to the Standard Model particles solely gravitationally. It is well-established that compared to the presence of free-streaming radiation, CMB spectra shift to higherℓ-modes in the presence of self-interacting non-photon radiation such as neutrinos and dark radiation. In this study, we further demonstrate that the scattering of non-photon radiation with dark matter can further amplify this phase shift. We show that when the energy density of the interacting radiation surpasses that of interacting dark matter around matter-radiation equality, the phase shift enhancement is proportional to the interacting dark matter abundance and remains insensitive to the radiation energy density. Given the presence of dark matter-radiation interaction, this additional phase shift emerges as a generic signature of models featuring an interacting dark sector or neutrino-dark matter scattering. Using neutrino-dark matter scattering as an example, we numerically calculate the amplified phase shift and offer an analytical interpretation of the result by modeling photon and neutrino perturbations with coupled harmonic oscillators. This framework also explains the phase shift contrast between self-interacting and free-streaming neutrinos. Fitting models with neutrino-dark matter or dark radiation-dark matter interactions to CMB and large-scale structure data, we validate the presence of the enhanced phase shift, affirmed by the linear dependence observed between the preferred regions of the sound horizon angleθsand interacting dark matter abundance. An increasedθsand a suppressed matter power spectrum is therefore a generic feature of models containing dark matter scattering with abundant dark radiation.more » « less
- 
            Abstract The abundance of faint dwarf galaxies is determined by the underlying population of low-mass dark matter (DM) halos and the efficiency of galaxy formation in these systems. Here, we quantify potential galaxy formation and DM constraints from future dwarf satellite galaxy surveys. We generate satellite populations using a suite of Milky Way (MW)–mass cosmological zoom-in simulations and an empirical galaxy–halo connection model, and assess sensitivity to galaxy formation and DM signals when marginalizing over galaxy–halo connection uncertainties. We find that a survey of all satellites around one MW-mass host can constrain a galaxy formation cutoff at peak virial masses of at the 1σlevel; however, a tail toward low prevents a 2σmeasurement. In this scenario, combining hosts with differing bright satellite abundances significantly reduces uncertainties on at the 1σlevel, but the 2σtail toward low persists. We project that observations of one (two) complete satellite populations can constrain warm DM models withmWDM≈ 10 keV (20 keV). Subhalo mass function (SHMF) suppression can be constrained to ≈70%, 60%, and 50% that in cold dark matter (CDM) at peak virial masses of 108, 109, and 1010M⊙, respectively; SHMF enhancement constraints are weaker (≈20, 4, and 2 times that in CDM, respectively) due to galaxy–halo connection degeneracies. These results motivate searches for faint dwarf galaxies beyond the MW and indicate that ongoing missions like Euclid and upcoming facilities including the Vera C. Rubin Observatory and Nancy Grace Roman Space Telescope will probe new galaxy formation and DM physics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    