Abstract We use a recent census of the Milky Way (MW) satellite galaxy population to constrain the lifetime of particle dark matter (DM). We consider two-body decaying dark matter (DDM) in which a heavy DM particle decays with lifetimeτcomparable to the age of the universe to a lighter DM particle (with mass splittingϵ) and to a dark radiation species. These decays impart a characteristic “kick velocity,”Vkick=ϵc, on the DM daughter particles, significantly depleting the DM content of low-mass subhalos and making them more susceptible to tidal disruption. We fit the suppression of the present-day DDM subhalo mass function (SHMF) as a function ofτandVkickusing a suite of high-resolution zoom-in simulations of MW-mass halos, and we validate this model on new DDM simulations of systems specifically chosen to resemble the MW. We implement our DDM SHMF predictions in a forward model that incorporates inhomogeneities in the spatial distribution and detectability of MW satellites and uncertainties in the mapping between galaxies and DM halos, the properties of the MW system, and the disruption of subhalos by the MW disk using an empirical model for the galaxy–halo connection. By comparing to the observed MW satellite population, we conservatively exclude DDM models withτ< 18 Gyr (29 Gyr) forVkick= 20 kms−1(40 kms−1) at 95% confidence. These constraints are among the most stringent and robust small-scale structure limits on the DM particle lifetime and strongly disfavor DDM models that have been proposed to alleviate the Hubble andS8tensions.
more »
« less
S8 Tension in the Context of Dark Matter–Baryon Scattering
Abstract We explore an interacting dark matter (IDM) model that allows for a fraction of dark matter (DM) to undergo velocity-independent scattering with baryons. In this scenario, structure on small scales is suppressed relative to the cold DM scenario. Using the effective field theory of large-scale structure, we perform the first systematic analysis of BOSS full-shape galaxy clustering data for the IDM scenario, and we find that this model ameliorates theS8tension between large-scale structure and Planck data. Adding theS8prior from the Dark Energy Survey (DES) to our analysis further leads to a mild ∼3σpreference for a nonvanishing DM–baryon scattering cross section, assuming ∼10% of DM is interacting and has a particle mass of 1 MeV. This result produces a modest ∼20% suppression of the linear power atk≲ 1hMpc−1, consistent with other small-scale structure observations. Similar scale-dependent power suppression was previously shown to have the potential to resolveS8tension between cosmological data sets. The validity of the specific IDM model explored here will be critically tested with upcoming galaxy surveys at the interaction level needed to alleviate theS8tension.
more »
« less
- Award ID(s):
- 2013951
- PAR ID:
- 10479696
- Publisher / Repository:
- The Astrophysical Journal Letters
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 954
- Issue:
- 1
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A bstract We propose a new interacting dark sector model, Stepped Partially Acoustic Dark Matter (SPartAcous), that can simultaneously address the two most important tensions in current cosmological data, the H 0 and S 8 problems. As in the Partially Acoustic Dark Matter (PAcDM) scenario, this model features a subcomponent of dark matter that interacts with dark radiation at high temperatures, suppressing the growth of structure at small scales and thereby addressing the S 8 problem. However, in the SPartAcous model, the dark radiation includes a component with a light mass that becomes non-relativistic close to the time of matter-radiation equality. As this light component annihilates away, the remaining dark radiation heats up and its interactions with dark matter decouple. The heating up of the dark sector results in a step-like increase in the relative energy density in dark radiation, significantly reducing the H 0 tension, while the decoupling of dark matter and dark radiation ensures that the power spectrum at larger scales is identical to ΛCDM.more » « less
-
Abstract The abundance of faint dwarf galaxies is determined by the underlying population of low-mass dark matter (DM) halos and the efficiency of galaxy formation in these systems. Here, we quantify potential galaxy formation and DM constraints from future dwarf satellite galaxy surveys. We generate satellite populations using a suite of Milky Way (MW)–mass cosmological zoom-in simulations and an empirical galaxy–halo connection model, and assess sensitivity to galaxy formation and DM signals when marginalizing over galaxy–halo connection uncertainties. We find that a survey of all satellites around one MW-mass host can constrain a galaxy formation cutoff at peak virial masses of at the 1σlevel; however, a tail toward low prevents a 2σmeasurement. In this scenario, combining hosts with differing bright satellite abundances significantly reduces uncertainties on at the 1σlevel, but the 2σtail toward low persists. We project that observations of one (two) complete satellite populations can constrain warm DM models withmWDM≈ 10 keV (20 keV). Subhalo mass function (SHMF) suppression can be constrained to ≈70%, 60%, and 50% that in cold dark matter (CDM) at peak virial masses of 108, 109, and 1010M⊙, respectively; SHMF enhancement constraints are weaker (≈20, 4, and 2 times that in CDM, respectively) due to galaxy–halo connection degeneracies. These results motivate searches for faint dwarf galaxies beyond the MW and indicate that ongoing missions like Euclid and upcoming facilities including the Vera C. Rubin Observatory and Nancy Grace Roman Space Telescope will probe new galaxy formation and DM physics.more » « less
-
Abstract We present new cosmological parameter constraints from the eBOSS Lyman-α forest survey. We use a new theoretical model and likelihood based on the PRIYA simulation suite. PRIYA is the first suite to resolve the Lyman-αforest in a (120 Mpc/h)3volume, using a multi-fidelity emulation technique. We use PRIYA to predict Lyman-αforest observables with ≲ 1% interpolation error over an 11 dimensional (9 simulated, 2 in post-processing) parameter space. We identify an internal tension within the flux power spectrum data. Once the discrepant data is removed, we find the primeval scalar spectral index measured at a pivot scale ofk0= 0.78 Mpc-1to benP= 1.009+0.027-0.018at 68% confidence. This measurement from the Lyman-αforest flux power spectrum alone is in reasonable agreement with Planck, and in tension with earlier eBOSS analyses. The amplitude of matter fluctuations isσ8= 0.733+0.026-0.029at 68% confidence, in agreement with Dark Energy Survey weak lensing measurements and other small-scale structure probes and in tension with CMB measurements from Planck and ACT. The effective optical depth to Lyman-α photons from our pipeline is in good agreement with earlier high resolution measurements. We find a linear power atz= 3 andk= 0.009 s/km of Δ2L= 0.302+0.024-0.027with a slopeneff= -2.264+0.026-0.018. Our flux power spectrum only chains prefer a low level of heating during helium reionization. When we add IGM temperature data we findnP= 0.983 ± 0.020 andσ8= 0.703+0.023-0.027. Our chains prefer an early and long helium reionization event, as suggested by measurements from the helium Lyman-αforest. In the near future we will use our pipeline to infer cosmological parameters from the DESI Lyman-α data.more » « less
-
Models which address both the Hubble and S8 tensions with the same mechanism generically cause a pre-recombination suppression of the small scale matter power spectrum. Here we focus on two such models. Both models introduce a self-interacting dark radiation fluid scattering with dark matter, which has a step in its abundance around some transition redshift. In one model, the interaction is weak and with all of the dark matter whereas in the other it is strong but with only a fraction of the dark matter. The weakly interacting case is able to address both tensions simultaneously and provide a good fit to a the Planck measurements of the cosmic microwave background (CMB), the Pantheon Type Ia supernovae, and a combination of low and high redshift baryon acoustic oscillation data, whereas the strongly interacting model cannot significantly ease both tensions simultaneously. The addition of high-resolution cosmic microwave background (CMB) measurements (ACT DR4 and SPT-3G) slightly limits both model's ability to address the Hubble tension. The use of the effective field theory of large-scale structures analysis of BOSS DR12 LRG and eBOSS DR16 QSO data additionally limits their ability to address the S8 tension. We explore how these models respond to these data sets in detail in order to draw general conclusions about what is required for a mechanism to address both tensions. We find that in order to fit the CMB data the time dependence of the suppression of the matter power spectrum plays a central role.more » « less