skip to main content


Title: Online Dynamics Learning for Predictive Control with an Application to Aerial Robots
In this work, we consider the task of improving the accuracy of dynamic models for model predictive control (MPC) in an online setting. Although prediction models can be learned and applied to model-based controllers, these models are often learned offline. In this offline setting, training data is first collected and a prediction model is learned through an elaborated training procedure. However, since the model is learned offline, it does not adapt to disturbances or model errors observed during deployment. To improve the adaptiveness of the model and the controller, we propose an online dynamics learning framework that continually improves the accuracy of the dynamic model during deployment. We adopt knowledge-based neural ordinary differential equations (KNODE) as the dynamic models, and use techniques inspired by transfer learning to continually improve the model accuracy. We demonstrate the efficacy of our framework with a quadrotor, and verify the framework in both simulations and physical experiments. Results show that our approach can account for disturbances that are possibly time-varying, while maintaining good trajectory tracking performance.  more » « less
Award ID(s):
1910308
PAR ID:
10479710
Author(s) / Creator(s):
; ;
Editor(s):
Liu, Karen; Kulic, Dana; Ichnowski, Jeff
Publisher / Repository:
Proceedings of The 6th Conference on Robot Learning
Date Published:
Journal Name:
Proceedings of The 6th Conference on Robot Learning, PMLR
Volume:
205
Page Range / eLocation ID:
2251--2261
Format(s):
Medium: X
Location:
Auckland, New Zealand
Sponsoring Org:
National Science Foundation
More Like this
  1. Liu, Karen ; Kulic, Dana ; Ichnowski, Jeff (Ed.)
    In this work, we consider the task of improving the accuracy of dynamic models for model predictive control (MPC) in an online setting. Although prediction models can be learned and applied to model-based controllers, these models are often learned offline. In this offline setting, training data is first collected and a prediction model is learned through an elaborated training procedure. However, since the model is learned offline, it does not adapt to disturbances or model errors observed during deployment. To improve the adaptiveness of the model and the controller, we propose an online dynamics learning framework that continually improves the accuracy of the dynamic model during deployment. We adopt knowledge-based neural ordinary differential equations (KNODE) as the dynamic models, and use techniques inspired by transfer learning to continually improve the model accuracy. We demonstrate the efficacy of our framework with a quadrotor, and verify the framework in both simulations and physical experiments. Results show that our approach can account for disturbances that are possibly time-varying, while maintaining good trajectory tracking performance. 
    more » « less
  2. Reinforcement learning (RL) in low-data and risk-sensitive domains requires performant and flexible deployment policies that can readily incorporate constraints during deployment. One such class of policies are the semi-parametric H-step lookahead policies, which select actions using trajectory optimization over a dynamics model for a fixed horizon with a terminal value function. In this work, we investigate a novel instantiation of H-step lookahead with a learned model and a terminal value function learned by a model-free off-policy algorithm, named Learning Off-Policy with Online Planning (LOOP). We provide a theoretical analysis of this method, suggesting a tradeoff between model errors and value function errors and empirically demonstrate this tradeoff to be beneficial in deep reinforcement learning. Furthermore, we identify the "Actor Divergence" issue in this framework and propose Actor Regularized Control (ARC), a modified trajectory optimization procedure. We evaluate our method on a set of robotic tasks for Offline and Online RL and demonstrate improved performance. We also show the flexibility of LOOP to incorporate safety constraints during deployment with a set of navigation environments. We demonstrate that LOOP is a desirable framework for robotics applications based on its strong performance in various important RL settings. 
    more » « less
  3. Convolutional neural networks (CNNs) are becoming increasingly deeper, wider, and non-linear because of the growing demand on prediction accuracy and analysis quality. The wide and deep CNNs, however, require a large amount of computing resources and processing time. Many previous works have studied model pruning to improve inference performance, but little work has been done for effectively reducing training cost. In this paper, we propose ClickTrain: an efficient and accurate end-to-end training and pruning framework for CNNs. Different from the existing pruning-during-training work, ClickTrain provides higher model accuracy and compression ratio via fine-grained architecture-preserving pruning. By leveraging pattern-based pruning with our proposed novel accurate weight importance estimation, dynamic pattern generation and selection, and compiler-assisted computation optimizations, ClickTrain generates highly accurate and fast pruned CNN models for direct deployment without any extra time overhead, compared with the baseline training. ClickTrain also reduces the end-to-end time cost of the pruning-after-training method by up to 2.3X with comparable accuracy and compression ratio. Moreover, compared with the state-of-the-art pruning-during-training approach, ClickTrain provides significant improvements both accuracy and compression ratio on the tested CNN models and datasets, under similar limited training time. 
    more » « less
  4. As machine learning (ML) algorithms are increasingly used in high-stakes applications, concerns have arisen that they may be biased against certain social groups. Although many approaches have been proposed to make ML models fair, they typically rely on the assumption that data distributions in training and deployment are identical. Unfortunately, this is commonly violated in practice and a model that is fair during training may lead to an unexpected outcome during its deployment. Although the problem of designing robust ML models under dataset shifts has been widely studied, most existing works focus only on the transfer of accuracy. In this paper, we study the transfer of both fairness and accuracy under domain generalization where the data at test time may be sampled from never-before-seen domains. We first develop theoretical bounds on the unfairness and expected loss at deployment, and then derive sufficient conditions under which fairness and accuracy can be perfectly transferred via invariant representation learning. Guided by this, we design a learning algorithm such that fair ML models learned with training data still have high fairness and accuracy when deployment environments change. Experiments on real-world data validate the proposed algorithm. 
    more » « less
  5. Person Re-IDentification (P-RID), as an instance-level recognition problem, still remains challenging in computer vision community. Many P-RID works aim to learn faithful and discriminative features/metrics from offline training data and directly use them for the unseen online testing data. However, their performance is largely limited due to the severe data shifting issue between training and testing data. Therefore, we propose an online joint multi-metric adaptation model to adapt the offline learned P-RID models for the online data by learning a series of metrics for all the sharing-subsets. Each sharing-subset is obtained from the proposed novel frequent sharing-subset mining module and contains a group of testing samples which share strong visual similarity relationships to each other. Unlike existing online P-RID methods, our model simultaneously takes both the sample-specific discriminant and the set-based visual similarity among testing samples into consideration so that the adapted multiple metrics can refine the discriminant of all the given testing samples jointly via a multi-kernel late fusion framework. Our proposed model is generally suitable to any offline learned P-RID baselines for online boosting, the performance improvement by our model is not only verified by extensive experiments on several widely-used P-RID benchmarks (CUHK03, Market1501, DukeMTMC-reID and MSMT17) and state-of-the-art P-RID baselines but also guaranteed by the provided in-depth theoretical analyses. 
    more » « less