skip to main content


This content will become publicly available on September 12, 2024

Title: Buckling behavior of tubes subjected to combined bending and torsion
Abstract

Wind turbine towers are highly slender and made of thin cylindrical shells with large diameter‐to‐thickness ratios, which means stability is an essential concern. The high diameter‐to‐thickness ratios of these cylinders make them highly imperfection sensitive, meaning their failure loads and failure modes are highly dependent on initial geometries. Combined bending and torsion is commonly a controlling load case in the upper tower segments, but this load case has not seen significant study to date. To address the knowledge gap, an experimental study was conducted on the stability of cylinders under combined bending and torsion. A total of 48 cylinders were tested with varying diameter‐to‐thickness ratios and bending‐to‐torsion combinations seen in wind turbine towers. To better understand how imperfections affect the buckling modes of these thin‐walled cylinders, a 3D laser scanner was used to determine geometric imperfections of each test specimen prior to testing. This paper details the test setup and results of the experiments.

 
more » « less
NSF-PAR ID:
10479746
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ce/papers
Volume:
6
Issue:
3-4
ISSN:
2509-7075
Format(s):
Medium: X Size: p. 1145-1150
Size(s):
p. 1145-1150
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper demonstrates the concept of adaptive repurposing of a portion of a decommissioned Clipper C96 wind turbine blade as a pole in a power transmission line application. The current research program is aimed at creating a path towards sustainable repurposing of wind turbine blades after they are removed from service. The present work includes modelling and analysis of expected load cases as prescribed in ASCE 74 and NESC using simplified boundary conditions for tangent pole applications. Load cases involving extreme wind, concurrent ice and wind, extreme ice, differential ice, broken conductor, and broken shield have been analyzed and governing load cases for bending, shear, and torsion have been examined. Relative stiffnesses of different parts forming the wind blade’s cross section (i.e., shell, web, and spar cap) are determined. The corresponding stresses associated with each part under the governing loads are compared to allowable strength values which are determined from composite laminate theory and modelling of the known laminate structure of the E-Glass FRP material. Stresses and deflections obtained are compared with governing reliability-based design criteria and code requirements. The results of the structural analysis indicate that the wind blade can resist the expected loads with reasonable safety factors and that the expected deflections are within permissible limits. Recommendations are provided for detailing and modification of the wind blade for a power pole application in which crossarm and davit connections are highlighted, and foundation details are emphasized. 
    more » « less
  2. null (Ed.)
    It is well known that perforation of a flat plate reduces its drag when exposed to a flow. However, studies have shown an opposite effect in the case of cylinders. Such a counterintuitive result can have significant consequences on the momentum modelling often used for wind turbine performance predictions, where increased porosity is intrinsically linked to lower drag. Here, a study of the drag of various types of porous cylinders, bars and plates under steady laminar inflow is presented. It is shown that, for most cases, the drag decreases with increased porosity. Only special types of perforations can increase the drag on both cylinders and bars, either by enhancing the effect of the rear half of the models or by organizing the wake structures. These rare occurrences are not relevant to wind turbine modelling, which indicates that current momentum models exhibit the qualitatively correct behaviour. 
    more » « less
  3. The multiline ring anchor (MRA) was devised as a cost-effective means for securing floating offshore wind turbines (FOWTs) to the seabed. FOWTs occurring in arrays create the possibility for attaching mooring lines from multiple units to a single anchor. Additionally, the deep embedment of the MRA into relatively strong soil permits high load capacity to be achievable with a small and lighter anchor, thereby reducing anchor material, transport, and installation costs. However, since the MRA is shorter than a conventional caisson, features such as wing plates and keying flaps are needed to achieve parity in load capacity with a caisson having a comparable diameter. Preliminary studies show that attaching wing plates to MRA in soft clay is highly effective in enhancing its horizontal load capacity, but only marginally effective in improving vertical load capacity. This motivated the current study investigating the use of keying flaps to further enhance vertical load capacity. Two-dimensional finite element analyses were conducted to understand how keying flaps impact on the failure mechanism of the stiffeners and provide reliable evaluations of the uplift resistance of the MRA. The results show that the thickness of the stiffener, flap length, and flap angle can affect the failure mechanism and bearing factors. For the optimal design of the stiffener, a comparative study was carried out to compare the effects of keying flaps and thickness of the stiffener. The studies show that introducing keying flaps can have comparable load capacity with thicker stiffeners, and that it can be an economical solution for achieving high vertical load capacity while containing material and fabrication costs. 
    more » « less
  4. The multiline ring anchor (MRA) was devised as a cost-effective means for securing floating offshore wind turbines (FOWTs) to the seabed. FOWTs occurring in arrays create the possibility for attaching mooring lines from multiple units to a single anchor. Additionally, the deep embedment of the MRA into relatively strong soil permits high load capacity to be achievable with a small and lighter anchor, thereby reducing anchor material, transport, and installation costs. However, since the MRA is shorter than a conventional caisson, features such as wing plates and keying flaps are needed to achieve parity in load capacity with a caisson having a comparable diameter. Preliminary studies show that attaching wing plates to MRA in soft clay is highly effective in enhancing its horizontal load capacity, but only marginally effective in improving vertical load capacity. This motivated the current study investigating the use of keying flaps to further enhance vertical load capacity. Two-dimensional finite element analyses were conducted to understand how keying flaps impact the failure mechanism of the stiffeners and provide reliable evaluations of the uplift resistance of the MRA. The results show that the thickness of the stiffener, flap length, and flap angle can affect the failure mechanism and bearing factors. For the optimal design of the stiffener, a comparative study was carried out to compare the effects of keying flaps and thickness of the stiffener. The studies show that introducing keying flaps can have comparable load capacity with thicker stiffeners and that it can be an economical solution for achieving high vertical load capacity while containing material and fabrication costs. 
    more » « less
  5. Abstract

    This paper provides an efficient and robust numerical solution for the linear buckling analysis of tubular members, such as the supporting tower structures of wind turbines. The method uses Fourier‐series approximations for the displacement functions. Longitudinal discretization can optionally be applied, i.e., the member can be divided into segments. The strain‐displacement relationship directly considers the curved geometry. The implementation allows for arbitrary support conditions. Four pure loading situations are considered, uniform – in each segment – along the length: normal force, bending moment, torque, and shear force; however, they can arbitrarily be combined, as is commonly occurring in wind turbine towers. The applied methodology results in a computational advantage compared to the shell finite element method, while still maintaining much more generality and applicability compared with common analytical solutions. Furthermore, the method is supplemented with features, as spectral analysis and buckling length calculation.

     
    more » « less