skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Range expansion can promote the evolution of plastic generalism in coarse-grained landscapes
Abstract Phenotypic plasticity is one way for organisms to deal with variable environments through generalism. However, plasticity is not found universally and its evolution may be constrained by costs and other limitations such as complexity: the need for multiple mutational steps before the adaptation is realized. Theory predicts that greater experienced heterogeneity, such as organisms may encounter when spatial heterogeneity is fine-grained relative to dispersal, should favor the evolution of a broader niche. Here we tested this prediction via simulation. We found that, contrary to classical predictions, coarse-grained landscapes can be the most favorable for the evolution of plasticity, but only when populations encounter those landscapes through range expansion. During these range expansions, coarse-grained landscapes select for each step in the complex mutational pathway to plastic generalism by blocking the dispersal of specialists. These circumstances provide ecological opportunities for innovative mutations that change the niche. Our results indicate a new mechanism by which range expansion and spatially structured landscapes interact to shape evolution and reveal that the environments in which a complex adaptation has the highest fitness may not be the most favorable for its evolution.  more » « less
Award ID(s):
2147101
PAR ID:
10479859
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Evolution Letters
Volume:
8
Issue:
2
ISSN:
2056-3744
Format(s):
Medium: X Size: p. 322-330
Size(s):
p. 322-330
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Rapid evolution of increased dispersal at the edge of a range expansion can accelerate invasions. However, populations expanding across environmental gradients often face challenging environments that reduce fitness of dispersing individuals. We used an eco‐evolutionary model to explore how environmental gradients influence dispersal evolution and, in turn, modulate the speed and predictability of invasion. Environmental gradients opposed evolution of increased dispersal during invasion, even leading to evolution of reduced dispersal along steeper gradients. Counterintuitively, reduced dispersal could allow for faster expansion by minimizing maladaptive gene flow and facilitating adaptation. While dispersal evolution across homogenous landscapes increased both the mean and variance of expansion speed, these increases were greatly dampened by environmental gradients. We illustrate our model's potential application to prediction and management of invasions by parameterizing it with data from a recent invertebrate range expansion. Overall, we find that environmental gradients strongly modulate the effect of dispersal evolution on invasion trajectories. 
    more » « less
  2. Abstract The processes that allow some lineages to diversify rapidly at a global scale remain poorly understood. Although earlier studies emphasized the importance of dispersal, global expansions expose populations to novel environments and may also require adaptation and diversification across new niches. In this study, we investigated the contributions of these processes to the global radiation of crows and ravens (genusCorvus). Combining a new phylogeny with comprehensive phenotypic and climatic data, we show thatCorvusexperienced a massive expansion of the climatic niche that was coupled with a substantial increase in the rates of species and phenotypic diversification. The initiation of these processes coincided with the evolution of traits that promoted dispersal and niche expansion. Our findings suggest that rapid global radiations may be better understood as processes in which high dispersal abilities synergise with traits that, like cognition, facilitate persistence in new environments. 
    more » « less
  3. PremiseThe distributions of plant clades are shaped by abiotic and biotic factors as well as historical aspects such as center of origin. Dispersals between distant areas may lead to niche evolution when lineages are established in new environments. Alternatively, dispersing lineages may exhibit niche conservatism, moving between areas with similar environmental conditions. Here we test these contrasting hypotheses in the Datureae clade (Solanaceae). MethodsWe used maximum likelihood methods to estimate the ancestral range of Datureae along with the history of biogeographic events. We then characterized the niche of each taxon using climatic and soil variables and tested for shifts in environmental niche optima. Finally, we examined how these shifts relate to the niche breadth of taxa and clades within Datureae and the degree of overlap between them. ResultsDatureae originated in the Andes and subsequently expanded its range to North America and non‐Andean regions of South America. The ancestral niche, and that of mostDaturaandTrompettiaspecies, is dry, whileBrugmansiaspecies likely shifted toward a more mesic environment. Nonetheless, most Datureae present moderate to high overlap in niche breadth today. ConclusionsThe expansion of Datureae into North America was associated with niche conservatism, with dispersal into similarly dry areas as occupied by the ancestral lineage. Subsequent niche evolution, including the apparent shift to a mesic niche inBrugmansia, diversified the range of habitats occupied by species in the tribe Datureae but also led to significant niche overlap among the three genera. 
    more » « less
  4. Abstract Adaptive plasticity is expected to evolve when informative cues predict environmental variation. However, plastic responses can be maladaptive even when those cues are informative, if prediction mistakes are shared across members of a generation. These fitness costs can constrain the evolution of plasticity when initial plastic mutants use of cues of only moderate reliability. Here, we model the barriers to the evolution of plasticity produced by these constraints and show that dispersal across a metapopulation can overcome them. Constraints are also lessened, though not eliminated, when plastic responses are free to evolve gradually and in concert with increased reliability. Each of these factors be viewed as a form of bet-hedging: by lessening correlations in the fates of relatives, dispersal acts as diversifying bet-hedging, while producing submaximal responses to a cue can be understood as a conservative bet-hedging strategy. While poor information may constrain the evolution of plasticity, the opportunity for bet-hedging may predict when that constraint can be overcome. Abstract Populations may make bad predictions when when using partially reliable cues to track changing environments (left). These mistakes can render plasticity deleterious (s < 0); right) when cue reliability is low, but dispersal among demes spreads out the effects of mistakes and allows the evolution of adaptive plasticity. 
    more » « less
  5. Abstract Meeting restoration targets may require active strategies to accelerate natural regeneration rates or overcome the resilience associated with degraded ecosystem states. Introducing desired ecosystem patches in degraded landscapes constitutes a promising active restoration strategy, with various mechanisms potentially causing these patches to become foci from which desired species can re‐establish throughout the landscape. This study considers three mechanisms previously identified as potential drivers of introduced patch dynamics: autocatalytic nucleation, directed dispersal, and resource concentration. These mechanisms reflect qualitatively different positive feedbacks. We developed an ecological model framework that compared how the occurrence of each mechanism was reflected in spatio‐temporal patch dynamics. We then analyzed the implications of these relationships for optimal restoration design. We found that patch expansion accelerated over time when driven by the autocatalytic nucleation mechanism, while patch expansion driven by the directed dispersal or resource concentration mechanisms decelerated over time. Additionally, when driven by autocatalytic nucleation, patch expansion was independent of patch position in the landscape. However, the proximity of other patches affected patch expansion either positively or negatively when driven by directed dispersal or resource concentration. For autocatalytic nucleation, introducing many small patches was a favorable strategy, provided that each individual patch exceeded a critical patch size. Introducing a single patch or a few large patches was the most effective restoration strategy to initiate the directed dispersal mechanism. Introducing many small patches was the most effective strategy for reaching restored ecosystem states driven by a resource concentration mechanism. Our model results suggest that introducing desirable patches can substantially accelerate ecosystem restoration, or even induce a critical transition from an otherwise stable degraded state toward a desired ecosystem state. However, the potential of this type of restoration strategy for a particular ecosystem may strongly depend on the mechanism driving patch dynamics. In turn, which mechanism drives patch dynamics may affect the optimal spatial design of an active restoration strategy. Each of the three mechanisms considered reflects distinct spatio‐temporal patch dynamics, providing novel opportunities for empirically identifying key mechanisms, and restoration designs that introduce desired patches in degraded landscapes according to these patch dynamics. 
    more » « less