Abstract Thiol‐disulfide interchange has been a large field of study for both biochemists and physical organic chemists alike due to its prevalence within biological systems and fundamentally interesting dynamic nature. More recently, efforts have been made to harness the power of this reversible reaction to make self‐assembling systems of macrocyclic molecules. However, less effort has focused on the fundamental work of isolating these assemblies and studying the factors that control the assembly and sorting of these emerging cyclic systems. A more complete fundamental understanding of factors controlling such self‐assembly could also improve understanding of the complex systems biology of thiol exchange while also aiding in the design of dynamic thiol assembly to enable applications ranging from drug delivery and biosensing to new materials synthesis. We have shown previously that pnictogen‐assisted self‐assembly enables formation of discrete disulfide macrocycles and cages without competition from polymer formation for a wide variety of alkyl thiols. In this study, we report the expansion of pnictogen‐assisted self‐assembly methods to form disulfide bearing macrocycles from aryl thiol containing ligands, allowing access to previously unreported molecules. These studies complement classical physical organic and chemical biology studies on the rates and products of aryl thiol oxidation to disulfides, and we show that this self‐assembly method revises some prevailing wisdom from these key classical studies by providing new product distributions and new isolable products in cyclic disulfide formation. 
                        more » 
                        « less   
                    
                            
                            Expanding Pnictogen-Assisted Self-Assembly of Disulfide Macrocycles to Include Heteroarenes
                        
                    
    
            New routes to the formation of macrocyclic molecules are of high interest to the supramolecular chemistry community and the chemistry community at large. Here we describe the incorporation of heterocyclic core units into discrete macrocycles via the utilization of a pnictogen-assisted self-assembly technique. This method allows for the rapid and efficient formation of discreet macrocyclic units from simple dithiol precursors in high yields with good control over macrocycle size. Up to this point, this technique has been reported on primarily benzylic thiol systems with very little incorporation of endohedral heteroatoms in the resulting assemblies. This study demonstrates the effective incorporation of heterocyclic core molecules allowing for the formation of a more functional cavity, resulting in the formation and crystallization of novel furan- and thiophene-based disulfide dimer and trimer macrocycles, respectively, that are isolated from a range of other larger discrete macrocycles that assemble as well. These disulfide macrocycles can be trapped as their more kinetically stable thioether congeners upon sulfur extrusion. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2003928
- PAR ID:
- 10479865
- Publisher / Repository:
- World Scientific
- Date Published:
- Journal Name:
- Journal of Porphyrins and Phthalocyanines
- Volume:
- 27
- Issue:
- 07n10
- ISSN:
- 1088-4246
- Page Range / eLocation ID:
- 1394 to 1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Cyclophanes are an admirable class of macrocyclic and cage compounds that often display unusual properties due to their high strain and unusual conformations. However, the exploration of new, complex cyclophanes has been encumbered by syntheses that can be low yielding, require harsh reaction conditions, and arduous purification steps. Herein, we discuss our work using metalloid-directed self-assembly and dynamic covalent chemistry to form cryptands. These were then subjected to mild conditions to produce discrete disulfide, thioether and hydrocarbon macrocycles in high yields. ‘Design of Experiments’ was then used to selectively synthesize targeted macrocycles from complex mixtures. 1 Introduction 2 Cryptands to Cyclophanes 3 Functionalizable Macrocycles 4 ‘Design of Experiments’ Targeted Synthesis 5 Conclusions and Outlookmore » « less
- 
            Abstract This work reports the synthesis and self‐assembly of perylene diimide (PDI)‐containing macrocycles designed for facile and high‐throughput production of shape‐persistent, macrocyclic organic electronic materials. Specifically, utilizing dynamic covalent chemistry (DCvC), this work showcases ditopic thiols can be utilized as building blocks toward 3D materials with defined porosity, low‐lying unoccupied molecular orbitals, and intrinsic fluorescence. The PDI disulfide‐linked macrocycles are generated in a single step from the thiolic building block to yield dimeric through pentameric assemblies in overall 95% combined yield; moreover, following self‐assembly, the disulfide ensemble is sulfur extruded to the more kinetically stable thioether in 79% combined yield. The modular design suggests these methods can be used to easily self‐assemble other electronically active precursors for utility in porous macrocyclic materials where stepwise pathways may be laborious and/or low yielding.more » « less
- 
            Herein we describe the use of dynamic combinatorial chemistry to self-assemble complex coiled coil motifs. We amide-coupled a series of peptides designed to form homodimeric coiled coils with 3,5-dithiobenzoic acid (B) at the N-terminus and then allowed each B-peptide to undergo disulfide exchange. In the absence of peptide, monomer B forms cyclic trimers and tetramers, and thus we expected that addition of the peptide to monomer B would shift the equilibrium towards the tetramer to maximize coiled coil formation. Unexpectedly, we found that internal templation of the B-peptide through coiled coil formation shifts the equilibrium towards larger macrocycles up to 13 B-peptide subunits, with a preference for 4, 7, and 10-membered macrocycles. These macrocyclic assemblies display greater helicity and thermal stability relative to intermolecular coiled coil homodimer controls. The preference for large macrocycles is driven by the strength of the coiled coil, as increasing the coiled coil affinity increases the fraction of larger macrocycles. This system represents a new approach towards the development of complex peptide and protein assemblies.more » « less
- 
            null (Ed.)Porous organic polymers (POPs) incorporating macrocyclic units have been investigated in recent years in an effort to transfer macrocycles' intrinsic host–guest properties onto the porous networks to achieve complex separations. In this regard, highly interesting building blocks are presented by the family of cyclotetrabenzoin macrocycles with rigid, well-defined, electron-deficient cavities. This macrocycle shows high affinity towards linear guest molecules such as carbon dioxide, thus offering an ideal building block for the synthesis of CO2-philic POPs. Herein, we report the synthesis of a POP through the condensation reaction between cyclotetrabenzil and 1,2,4,5-tetraaminobenzene under ionothermal conditions using the eutectic zinc chloride/sodium chloride/potassium chloride salt mixture at 250 °C. Notably, following the condensation reaction, the macrocycle favors three-dimensional (3D) growth rather than a two-dimensional one while retaining the cavity. The resulting polymer, named 3D-mPOP, showed a highly microporous structure with a BET surface area of 1142 m2 g−1 and a high carbon dioxide affinity with a binding enthalpy of 39 kJ mol−1. Moreover, 3D-mPOP showed very high selectivity for carbon dioxide in carbon dioxide/methane and carbon dioxide/nitrogen mixtures.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    