skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CAVITURRITELLA (FRIEND & ANDERSON, 2023) - A NEW GENUS OF TURRITELLIDAE DEFINED IN PART BY THE ABSENCE OF A COLUMELLA (HOLLOW NEWEL STATE)
n examining Plio-pleistocene turritellids from the Atlantic coastal plain we recently discovered a previously undescribed character state where the inner shell wall appears to have not been formed. This state along with a C1B2A3 apical ontogeny pattern for spiral sculpture appears to characterize a clade of turritellids now extirpated from Florida and the Atlantic coastal plain, but including several common eastern Pacific species. We designate Turritella gonostoma Valenciennes, 1832 as the type species for this genus and refer the eastern Pacific species Turritella banksii Gray in Reeve, 1849, Turritella broderipiana d’Orbigny, 1840, Turritella abrupta† Spieker, 1922 along with several western Atlantic fossil species to this genus. It is likely that numerous additional fossil and extant eastern Pacific turritellids should be referred to this genus. We designate this newly described character state as hollow newel morphology, based on an analogy to spiral staircases where the absence of a central supporting post is termed hollow (or open) newel construction. The hollow newel state also occurs in other gastropod taxa, though it appears to be rare among those with high spires. We also distinguish this state from other axis forms including a columella, an umbilicus, a hollow columella, and a partially resorbed columella.  more » « less
Award ID(s):
2225014
PAR ID:
10479908
Author(s) / Creator(s):
; ;
Publisher / Repository:
Western Society of Malacologists
Date Published:
Journal Name:
Western Society of Malacologists annual meeting
Format(s):
Medium: X
Location:
Orange, CA
Sponsoring Org:
National Science Foundation
More Like this
  1. Hendricks, Jonathan R. (Ed.)
    Turritellid gastropods are among the most widespread, abundant, and diverse mollusks in Plio-Pleistocene deposits of the Atlantic coastal plain and Florida, with at least 46 species and subspecies described over almost two centuries. Yet the systematic status of these common fossil species and their phylogenetic relationships—to each other and to turritellids living today in the western Atlantic—have never been investigated in detail. We make use of recent molecular phylogenetic work on living turritellids and new analyses of shell characters to review the group from this time interval to the present in a comprehensive phylogenetic analysis and assessment of their evolutionary history in the region. We conclude that 20 fossil and two Recent species are valid. Four of these species are placed in the genus Torcula Gray, 1847; five in Caviturritella new genus, and eleven in “Turritella” sensu lato. We identify Torcula perattenuata as the likely direct ancestor of one of the two turritellid species living today off the southeastern U.S. coast, Torcula exoleta, and we elucidate the fossil record of the other extant species, “Turritella” perexilis (senior synonym of Turritella acropora). We show that Caviturritella was extirpated from the United States Gulf and Atlantic coastal plains in the Early Pleistocene but is still represented in the western Atlantic by the living species C. variegata in the southern Caribbean. We also present the first detailed treatment of Plio-Pleistocene turritellid fossils from Georgia. Our analysis shows that the Plio-Pleistocene Pinecrest beds of Florida contain 18 co-occurring turritellid species, which is the highest turritellid species diversity in one formation known in the fossil record. 
    more » « less
  2. Turritellid evolution represents a microcosm of large-scale patterns of molluscan evolution during the Cenozoic observed across the region. Additionally, isotopic studies of fast-growing turritellids and other gastropods have been important for documenting changing environment including the history of nutrient conditions associated with upwelling and different patterns of seasonal rainfall distribution across the region. These studies have included data from Colombia, Florida, Panama and Venezuela, documenting paleoenvironmental conditions that were substantially different than modern oceanographic conditions. Aside from being substantially impacted by extinction and showing declines in abundance along with other suspension feeding taxa, turritellids also exhibited 1) a shift towards hard substrate and biogenic substrate associated taxa; 2) a shift away from planktotrophy as a larval feeding mode; and 3) a loss of large species in association with the decline of high productivity environments. While soft-substrate-associated turritellids declined in both diversity and ecological significance, the reef and hardground associated turritellid genus Vermicularia continued to diversify, and Vermicularia now represent half of all turritellid species in the western Atlantic, and the majority of turritellid species in Florida. Larval mode within turritellids shifted towards increased lecithotrophy, independently in deeply divergent lineages when comparing modern taxa, fossil assemblages, and modern eastern Pacific species. The decline of the generally large-bodied taxon Caviturritella in the western Atlantic, including both the extirpation of Caviturritella from Florida and the extinction of the largest ever turritellid gastropod, Caviturritella abrupta, mirrors observed losses of many large-bodied taxa and declines in body size observed in other lineages, especially bivalves. Funding source: BMA is supported by NSF DEB 2225014 to WDA and J. Hendricks. 
    more » « less
  3. ABSTRACT AimThe aim of the current study is to conduct a comprehensive phylogenetic analysis of the genusArbaciato elucidate the evolution and phylogenetic relationships among all extant species and reevaluate the presence of geographic structure within species that have wide, fragmented distributions. LocationSpecimens ofArbaciawere collected from 34 localities spanning the Atlantic and Pacific Oceans, and the Mediterranean Sea. MethodsWe obtained sequences from three mitochondrial markers (COI, 16S and the control region and adjacent tRNAs) and two nuclear markers (28S and 18S; the latter ultimately excluded from the final analyses). Phylogenetic trees were constructed using maximum likelihood and Bayesian inference approaches. A time‐calibrated phylogenetic tree was inferred using a relaxed Bayesian molecular clock and three fossil calibration points. ResultsOur analysis supports the monophyly of the genusArbacia, including the speciesArbacia nigra(previously assigned to the monotypic genusTetrapygus). The new phylogenetic topology suggests an alternative biogeographic scenario of initial divergence between Atlantic and Pacific subclades occurring approximately 9 million years ago. The dispersal and subsequent diversification of the Pacific subclade to the southeast Pacific coincides with the onset of glacial and interglacial cycles in Patagonia. In the Atlantic subclade, the split betweenA. punctulataandA. lixulaoccurred 3.01–6.30 (median 3.74 million years ago), possibly associated with the strengthening of the Gulf Stream current connecting the western and eastern Atlantic. Our study also reveals significant genetic and phylogeographic structures within both Atlantic species, indicating ongoing differentiation processes between populations. Main ConclusionOur study provides valuable insights into the evolutionary history and biogeography of the genusArbaciaand highlights the complex interplay between historical climate changes and oceanic currents in shaping the distribution and diversification of echinoids in the Atlantic and Pacific Oceans. 
    more » « less
  4. Abstract Tropical cyclogenesis in the Atlantic is influenced by environmental parameters including vertical wind shear, which is sensitive to forcing from the tropical Pacific. Reliable projections of the response of such parameters to radiative forcing are key to understanding the future of hurricanes and coastal risk. One of the least certain aspects of future climate is the warming of the eastern tropical Pacific Ocean. Using climate model experiments isolating the warming of the eastern Pacific and controlling for other factors including El Niño‐Southern Oscillation (ENSO), changes in Atlantic tropical cyclogenesis potential by the end of this century are ∼20% lower with enhanced eastern Pacific warming. The ENSO signal in Atlantic tropical cyclogenesis potential amplifies with global warming, and that amplification is larger with enhanced eastern Pacific warming. The largest changes and dependencies on eastern Pacific warming are found in the south‐central main development region, attributable to changes in zonal overturning. 
    more » « less
  5. and frequently-occurring marine macrofossil groups of the past 100+ million years worldwide. From their apparent origin in central Tethys in the late Jurassic they spread across most of the world’s oceans by the Late Cretaceous. They suffered substantial extinction at the K-Pg but diversified quickly thereafter, and they were present on every continent during the Paleogene. The record of their diversity, abundance, and morphology during the Cenozoic has become clearer due to recent studies of body size, molecular phylogenetic analysis, and systematic treatments of Paleogene, Miocene, and Plio-Pleistocene fossils from the Western Atlantic region (southeastern North America, the Caribbean, Central America, and northern South America). A database (still a work in progress) of more than 230 described species from this region shows turritellid diversity of more than 20 species in the Paleocene, a low of fewer than 10 in the early Eocene, a peak of more than 80 in the Miocene, a decline to around 20 in the Pliocene, and a decline to only 4 species in the central Western Atlantic today. Diversity within single formations shows a slightly different pattern, with highs of 11–16 species in the Late Miocene of Colombia and 18 species in the Late Pliocene Pinecrest Sand of Florida. Overall abundance has also declined, with turritellid-dominated assemblages common across the region throughout the Cenozoic, but limited today to only small areas of northern Venezuela. Higher taxonomic assignments of fossil and Recent turritellids and their phylogenetic relationships are still poorly known (and are likely to remain so for many species), but recent molecular data and systematic work on fossil turritellids indicate that several clades (e.g., Torcula) persisted in the region throughout the Cenozoic, while other groups which became significant likely appeared in the Miocene, including Vermicularia and Caviturritella. A common pattern in all of this change is correlation with likely patterns of primary productivity. Hyperdiverse assemblages and high regional diversity of turritellids appear to occur at times and places of high productivity, frequently in association with upwelling or significant terrestrial runoff, and patterns of extinction (temporal and geographic) correlate with declines in productivity. Funding source: NSF DEB 2225014 
    more » « less