skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Title: COMPARATIVE ANALYSIS OF THE MICROSTRUCTURE OF SPIRAL SHELL RIBS IN TWO BIVALVE AND THREE GASTROPOD SPECIES
Spiral ribs are among the most common morphological features in mollusk shells and previous studies have shown them to have functional significance with expected evolutionary consequences. Many previous studies, however, have treated these features as potentially analogous across taxa, without examining whether they may have important constructional dissimilarities. Mollusk shells are made of multiple layers of calcite or aragonite which may exhibit different microstructure or microstructure orientations which may in turn impact their mechanical properties. In this study, five specimens of marine mollusks with spiral ribs, including three turritellid gastropods and two bivalves, were examined under SEM to examine microstructure of ribbed region in comparison of non-ribbed region. SEM imaging revealed differences in the number and thickness of distinct microstructural layers of each shell and allowed comparisons to be made between the ribbed and non-ribbed region of each specimen, providing a greater understanding of how these ribs were constructed during shell deposition. Ribs in all specimens are formed through the thickening of single or multiple crossed-lamellar layers, but differences in rib ultrastructures were found among species and different ribs of same species, showing great diversity and complexity of constructional mechanisms. This diversity in rib construction might indicate heterology in the development of shell sculpture, especially mechanisms for differences in concurrently deposited rib strength. This is especially notable for turritellids where the pattern of onset of spiral ornamentation is phylogenetically informative, suggesting homology of rib identity. Further study will be conducted on turritellid gastropods in different lineages to explore the taxonomic meaning of different rib constructional mechanisms.  more » « less
Award ID(s):
2225014
PAR ID:
10479910
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Geological Society of America
Date Published:
Journal Name:
Geological Society of America Abstracts with Programs
Volume:
55
Issue:
6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A Eulerian—Lagrangian model has been developed to simulate particle attachment to surfaces with arc-shaped ribs in a two-dimensional channel flow at low Reynolds numbers. Numerical simulation has been performed to improve the quantitative understanding of how rib geometries enhance shear rates and particle-surface interact for various particle sizes and flow velocities. The enhanced shear rate is attributed to the wavy flows that develop over the ribbed surface and the weak vortices that form between adjacent ribs. Varying pitch-to-height ratio can alter the amplitude of the wavy flow and the angle of attack of the fluid on the ribs. In the presence of these two competing factors, the rib geometry with a pitch-to-height ratio of two demonstrates the greatest shear rate and the lowest fraction of particle attachment. However, the ribbed surfaces have negligible effects on small particles at low velocities. A force analysis identifies a threshold shear rate to reduce particle attachment. The simulated particle distributions over the ribbed surfaces are highly non-uniform for larger particles at higher velocities. The understanding of the effect of surface topography on particle attachment will benefit the design of surface textures for mitigating particulate fouling in a wide range of applications. 
    more » « less
  2. Turritellid evolution represents a microcosm of large-scale patterns of molluscan evolution during the Cenozoic observed across the region. Additionally, isotopic studies of fast-growing turritellids and other gastropods have been important for documenting changing environment including the history of nutrient conditions associated with upwelling and different patterns of seasonal rainfall distribution across the region. These studies have included data from Colombia, Florida, Panama and Venezuela, documenting paleoenvironmental conditions that were substantially different than modern oceanographic conditions. Aside from being substantially impacted by extinction and showing declines in abundance along with other suspension feeding taxa, turritellids also exhibited 1) a shift towards hard substrate and biogenic substrate associated taxa; 2) a shift away from planktotrophy as a larval feeding mode; and 3) a loss of large species in association with the decline of high productivity environments. While soft-substrate-associated turritellids declined in both diversity and ecological significance, the reef and hardground associated turritellid genus Vermicularia continued to diversify, and Vermicularia now represent half of all turritellid species in the western Atlantic, and the majority of turritellid species in Florida. Larval mode within turritellids shifted towards increased lecithotrophy, independently in deeply divergent lineages when comparing modern taxa, fossil assemblages, and modern eastern Pacific species. The decline of the generally large-bodied taxon Caviturritella in the western Atlantic, including both the extirpation of Caviturritella from Florida and the extinction of the largest ever turritellid gastropod, Caviturritella abrupta, mirrors observed losses of many large-bodied taxa and declines in body size observed in other lineages, especially bivalves. Funding source: BMA is supported by NSF DEB 2225014 to WDA and J. Hendricks. 
    more » « less
  3. Hendricks, Jonathan R. (Ed.)
    Turritellid gastropods are among the most widespread, abundant, and diverse mollusks in Plio-Pleistocene deposits of the Atlantic coastal plain and Florida, with at least 46 species and subspecies described over almost two centuries. Yet the systematic status of these common fossil species and their phylogenetic relationships—to each other and to turritellids living today in the western Atlantic—have never been investigated in detail. We make use of recent molecular phylogenetic work on living turritellids and new analyses of shell characters to review the group from this time interval to the present in a comprehensive phylogenetic analysis and assessment of their evolutionary history in the region. We conclude that 20 fossil and two Recent species are valid. Four of these species are placed in the genus Torcula Gray, 1847; five in Caviturritella new genus, and eleven in “Turritella” sensu lato. We identify Torcula perattenuata as the likely direct ancestor of one of the two turritellid species living today off the southeastern U.S. coast, Torcula exoleta, and we elucidate the fossil record of the other extant species, “Turritella” perexilis (senior synonym of Turritella acropora). We show that Caviturritella was extirpated from the United States Gulf and Atlantic coastal plains in the Early Pleistocene but is still represented in the western Atlantic by the living species C. variegata in the southern Caribbean. We also present the first detailed treatment of Plio-Pleistocene turritellid fossils from Georgia. Our analysis shows that the Plio-Pleistocene Pinecrest beds of Florida contain 18 co-occurring turritellid species, which is the highest turritellid species diversity in one formation known in the fossil record. 
    more » « less
  4. Abstract Mollusk shells protect the animals that form and inhabit them. They are composites of minerals and organics, with diverse mesostructures, including nacre, prismatic calcite, crossed‐lamellar aragonite, and foliated calcite. Twins, that is, crystals mirror symmetric with respect to their coherent interface, occurring as formation or deformation twins, are observed in all mollusk shell mesostructures but never within calcite prisms. Here, nanotwins and microwins within single calcite prisms are observed in different shells. Using Polarization‐dependent Imaging Contrast (PIC) mapping with 20–60 nm resolution, twins are observed to be 0.2–3 µm thick layers of differently oriented and colored crystals with respect to the main prism crystal. Multiple twins are interspersed with the prism crystal, parallel to one another, and similarly oriented. When comparing images of calcite prisms and twins obtained by PIC mapping and by Electron Back‐Scattered Diffraction (EBSD), the images correspond precisely. All twins are e‐twin types, with 127° angular distance betweenc‐axes. E‐twins are the most common deformation twins in geologic calcite, as also observed here in Carrara marble. Location of all twins near the outer surface of all shells and e‐twin type both suggest that twins within calcite prisms in mollusk shells result from deformation twinning. 
    more » « less
  5. The Plio-Pleistocene regional mass extinction of molluscan fauna of Florida and the US Atlantic coastal plain was followed by a period of rapid origination, resulting in similar modern regional species richness. Predator and prey relationships were impacted by high extinction rates across all taxa. Previous studies have suggested that the extinction is associated with a possible system-wide decline in predation intensity, but data from additional prey species both prior to and after the extinctions are needed to determine how general this pattern may be. We examined predatory trace fossils on turritellid gastropods, a clade which experienced substantial extinction during this time. Overall rates of peeling predation on turritellid gastropods across the extinction boundary decreased – with turritellid species having an average peel-repair frequency of 0.41 in the Plio-Pleistocene compared to a frequency of 0.16 in modern samples. However, in the two surviving lineages, Turritella perexilis and Torcula exoleta, peel-repair frequency was similar in the Plio-Pleistocene samples and in modern samples. Fossil T. perexilis had a peel frequency of 0.26, compared to the modern samples’ peeling frequency of 0.14. Fossil T. perattenuata had a peeling frequency of 0.18, while its descendant, T. exoleta, had a peeling frequency of 0.17. Additionally, the incidence of multiple attacks in modern samples is markedly lower. While a majority (89%) of turritellid species went extinct during this event, most fossil species had higher peel-repair frequencies than fossils of the surviving lineages. In contrast with peeling frequency, the frequency of drilling predation on modern descendants is higher than their fossil ancestors (0.21 vs 0.02 and 0.14 vs. 0.11 for T. exoleta/T. perattenuata and T. perexilis, respectively). Across all species, drilling increased from an average of 0.11 in the Plio-Pleistocene samples to 0.19 in modern samples. These results suggest that as turritellid prey diversity decreased, predators may have adapted to attack surviving species, or these lineages may have become more vulnerable to their predators. 
    more » « less