skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scheduling-based Transmit Signal Shaping in Energy-Constrained Molecular Communications
Note: this paper is *accepted* it is not published yet, the date entered is the date that the paper was accepted.  more » « less
Award ID(s):
1817200
PAR ID:
10479931
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Molecular, Biological and Multi-Scale Communications
ISSN:
2332-7804
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Note that this paper is *accepted* and will be published in the next couple of months (there was an accepted button before, but I do not see it) 
    more » « less
  2. Abstract Agarics (gilled mushrooms) and the order Agaricales include some of the best‐known and most charismatic fungi. However, neither group has had its constituent genera exhaustively compiled in a modern phylogenetic context. To provide that framework, we identified and analyzed 1383 names of genera of agarics (regardless of taxonomic placement) and the Agaricales (regardless of morphology), compiling various data for each name. Including 590 accepted names, the other 793 listed with reasons explaining their disuse, this compendium is intended to be comprehensive at present and phylogenetically up‐to‐date. Data we gathered included type species, continents from which type species were described, accepted synonyms of those species, current family placements, gross macromorphological categories, and sequenced loci (for type specimens, type species, and each genus as a whole). Index Fungorum provided a basis for the data, but much was manually confirmed, augmented, or corrected based on recent literature. Among accepted gilled genera, 82% belonged to the Agaricales; among accepted genera of Agaricales, 67% were gilled. Based on automated searches of GenBank and MycoCosm, 7% of generic names had DNA sequences of their type specimens, 68% had sequences of their type species, and 87% had sequences representing their genus. This leaves an estimated 103 accepted genera entirely lacking molecular data. Some subsets of genera have been sequenced relatively thoroughly (e.g., nidularioid genera and genera described from Europe); others relatively poorly (e.g., cyphelloid genera and genera described from Africa and tropical Asia). We also list nomenclaturally threatened and taxonomically doubtful genus and family names. 
    more » « less
  3. Abstract Main goal of the JUNO experiment is to determine the neutrino mass ordering using a 20 kt liquid-scintillator detector. Its key feature is an excellent energy resolution of at least 3% at 1 MeV, for which its instruments need to meet a certain quality and thus have to be fully characterized. More than 20,000 20-inch PMTs have been received and assessed by JUNO after a detailed testing program which began in 2017 and elapsed for about four years. Based on this mass characterization and a set of specific requirements, a good quality of all accepted PMTs could be ascertained. This paper presents the performed testing procedure with the designed testing systems as well as the statistical characteristics of all 20-inch PMTs intended to be used in the JUNO experiment, covering more than fifteen performance parameters including the photocathode uniformity. This constitutes the largest sample of 20-inch PMTs ever produced and studied in detail to date, i.e. 15,000 of the newly developed 20-inch MCP-PMTs from Northern Night Vision Technology Co. (NNVT) and 5000 of dynode PMTs from Hamamatsu Photonics K. K.(HPK). 
    more » « less
  4. Note, paper has been accepted, will be published shortly. 
    more » « less
  5. This paper had been accepted by the 2025 IEEE International Conference on Engineering Reliable Autonomous Systems (ERAS). 
    more » « less