skip to main content

Title: Take me for a ride: Herbivores can facilitate plant reinvasions

Herbivores shape plant invasions through impacts on demography and dispersal, yet only demographic mechanisms are well understood. Although herbivores negatively impact demography by definition, they can affect dispersal either negatively (e.g., seed consumption), or positively (e.g., caching). Exploring the nuances of how herbivores influence spatial spread will improve the forecasting of plant movement on the landscape. Here, we aim to understand how herbivores impact how fast plant populations spread through varying impacts on plant demography and dispersal. We strive to determine whether, and under what conditions, we see net positive effects of herbivores, in order to find scenarios where herbivores can help to promote spread. We draw on classic invasion theory to develop a stage‐structured integrodifference equation model that incorporates herbivore impacts on plant demography and dispersal. We simulate seven herbivore “syndromes” (combinations of demographic and/or dispersal effects) drawn from the literature to understand how increasing herbivore pressure alters plant spreading speed. We find that herbivores with solely negative effects on plant demography or dispersal always slow plant spreading speed, and that the speed slows monotonically as herbivore pressure increases. However, we also find that plant spreading speed can be hump shaped with respect to herbivore pressure: plants spread faster in the presence of herbivores (for low herbivore pressure) and then slower (for high herbivore pressure). This result is robust, occurring across all syndromes in which herbivores have a positive effect on plant dispersal, and is a sign that the positive effects of herbivores on dispersal can outweigh their negative effects on demography. For all syndromes we find that sufficiently high herbivore pressure results in population collapse. Thus, our findings show that herbivores can speed up or slow down plant spread. These insights allow for a greater understanding of how to slow invasions, facilitate native species recolonization, and shape range shifts with global change.

more » « less
Author(s) / Creator(s):
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Whether wild herbivores confer biotic resistance to invasion by exotic plants remains a key question in ecology. There is evidence that wild herbivores can impede invasion by exotic plants, but it is unclear whether and how this generalises across ecosystems with varying wild herbivore diversity and functional groups of plants, particularly over long‐term (decadal) time frames.

    Using data from three long‐term (13‐ to 26‐year) exclosure experiments in central Kenya, we tested the effects of wild herbivores on the density of exotic invasive cacti,Opuntia strictaandO. ficus‐indica(collectively,Opuntia), which are among the worst invasive species globally. We also examined relationships between wild herbivore richness and elephant occurrence probability with the probability ofO. strictapresence at the landscape level (6150 km2).

    Opuntiadensities were 74% to 99% lower in almost all plots accessible to wild herbivores compared to exclosure plots.Opuntiadensities also increased more rapidly across time in plots excluding wild herbivores. These effects were largely driven by megaherbivores (≥1000 kg), particularly elephants.

    At the landscape level, modelledOpuntia strictaoccurrence probability was negatively correlated with estimated species richness of wild herbivores and elephant occurrence probability. On average,O. strictaoccurrence probability fell from ~0.56 to ~0.45 as wild herbivore richness increased from 6 to 10 species and fell from ~0.57 to ~0.40 as elephant occurrence probability increased from ~0.41 to ~0.84. These multi‐scale results suggest that any facilitative effects ofOpuntiaby wild herbivores (e.g. seed/vegetative dispersal) are overridden by suppression (e.g. consumption, uprooting, trampling).

    Synthesis. Our experimental and observational findings that wild herbivores confer resistance to invasion by exotic cacti add to evidence that conserving and restoring native herbivore assemblages (particularly megaherbivores) can increase community resistance to plant invasions.

    more » « less
  2. Abstract

    Despite wide recognition of the importance of anthropogenically driven changes in large herbivore communities—including both declines in wildlife and increases in livestock—there remain large gaps in our knowledge about the impacts of these changes on plant communities, particularly when combined with concurrent changes in climate. Considering these prominent forms of global change in tandem enables us to better understand controls on savanna vegetation structure and diversity under real‐world conditions.

    We conducted a field experiment using complete and semi‐permeable herbivore exclosures to explore the difference in plant communities among sites with wild herbivores only, with cattle in addition to wild herbivores, and with no large herbivores. To understand variation in effects across climatic contexts, the experiment was replicated at three locations along a topoclimatic gradient in California. Critically, this is the first such experiment to compare cattle and wildlife impacts along an environmental gradient within a single controlled experiment.

    Vegetation structure responded strongly to herbivore treatment regardless of climate. Relative to the isolated effects of wildlife, exclusion of all large herbivores generally increased structural components related to cover and above‐ground biomass while the addition of cattle led to reductions in vegetation cover, litter, shading and standing biomass. Furthermore, wildlife had a consistent neutral or positive effect on plant diversity, while the effect of livestock addition was context dependent. Cattle had a neutral to strongly negative effect at low aridity, but a positive effect at high aridity. These results suggest that (a) herbivore effects can override climate effects on vegetation structure, (b) cattle addition can drive different effects on diversity and (c) herbivore effects on diversity are modulated by climate.

    Synthesis. Our results illustrate very distinctive shifts in plant communities between two realistic forms of change in ungulate herbivore assemblages—livestock addition and large herbivore losses—particularly for plant diversity responses, and that these responses vary across climatic contexts. This finding has important implications for the management and protection of plant biodiversity given that over a quarter of the Earth's land area is managed for livestock and climate regimes are changing globally.

    more » « less
  3. Abstract

    Herbivores often have highly variable impacts on plant fecundity. The relative contribution of different environmental factors operating at varying spatial scales in affecting this variability is often unclear. We examined how density‐dependent seed predation at local scales and regional differences in primary productivity are associated with variation in the magnitude of pre‐dispersal seed predation onMonarda fistulosa(Lamiaceae). WithinM. fistulosapopulations growing in a low‐productivity region (LPR), Montana, USA, and a high‐productivity region (HPR), Wisconsin, USA, we quantified the magnitude of pre‐dispersal seed predation among individual plants differing in seed head densities. Out of a total of 303M. fistulosaplants that were surveyed, we found half as many herbivores in seed heads in the LPR (n = 133 herbivores) compared to the HPR (n = 316). In the LPR, 30% of the seed heads were damaged in plants with low seed head density, while 61% of seed heads were damaged in plants with high seed head density. Seed head damage was consistently high in the HPR (about 49% across the range of seed head density) compared to the LPR (45% across a range of seed head density). However, the proportion of seeds per seed head that were destroyed by herbivores was nearly two times higher (~38% loss) in the LPR compared to HPR (22% loss). Considering the combined effects of probability of damage and seed loss per seed head, the proportion seed loss per plant was consistently higher in the HPR regardless of seed head density. Nevertheless, because of greater seed head production, the total number of viable seeds produced per plant was higher in HPR and high‐density plants, despite being exposed to greater herbivore pressure. These findings show how large‐scale factors can interact with local‐scale factors to influence how strongly herbivores suppress plant fecundity.

    more » « less
  4. Abstract

    Savanna tree cover is dynamic due to disturbances such as fire and herbivory. Frequent fires can limit a key demographic transition from sapling to adult height classes in savanna trees. Saplings may be caught in a ‘fire trap’, wherein individuals repeatedly resprout following fire top‐kill events. Saplings only rarely escape the cycle by attaining a fire‐resistant height (e.g. taller than the minimum scorch height) during fire‐free intervals.

    Large mammalian herbivores also may trap trees in shorter size classes. Browsing herbivores directly limit sapling height, while grazing herbivores such as cattle facilitate sapling growth indirectly via grass removal. Experimental studies investigating how meso‐wildlife, megaherbivores and domestic livestock affect height of resprouts following fire are rare, but necessary for fully understanding how herbivory may reinforce (or counteract) the fire trap. In our study system, interactive fire–herbivore effects on transitions from sapling (<1 m) to adult tree (>1 m) height classes may be further influenced by plant defences, such as symbiotic ants.

    We used the Kenya Long‐term Exclosure Experiment (KLEE) to investigate how post‐fire resprout size of a widespread monodominant East African tree,Acacia drepanolobiumwas influenced by (a) herbivory by different combinations of cattle, meso‐wildlife (15–1,000 kg) and megaherbivores (>1,000 kg) and (b) the presence of acacia–ant mutualists that confer tree defences. We sampled height, stem length and ant occupancy of resprouts exposed to different herbivore combinations before and after controlled burns.

    Resprout height of saplings that were short prior to fire (<1 m) was reduced primarily by meso‐wildlife. Negative effects of elephants on post‐fire resprout height increased with pre‐fire tree size, suggesting that resprouts of the tallest trees (with the greatest potential to escape the fire trap cycle) were preferentially browsed and reduced in height by elephants. There were no significant cattle effects.

    Synthesis. We provide experimental evidence for two potential pathways through which large herbivores exert control over sapling escape from the fire trap: (a) post‐fire meso‐wildlife browsing of short (<1 m) resprouts and (b) elephant browsing of the largest size class of resprouts, which would otherwise be most likely to escape the fire trap.

    more » « less
  5. Abstract

    Wild large herbivores are declining worldwide. Despite extensive use of exclosure experiments to investigate herbivore impacts, there is little consensus on the effects of wild large herbivores on ecosystem function.

    Of the ecosystem functions likely impacted, we reviewed the five most‐studied in exclosure experiments: ecosystem resilience/resistance to disturbance, nutrient cycling, carbon cycling, plant regeneration, and primary productivity.

    Experimental data on large wild herbivores' effects on ecosystem functions were predominately derived from temperate grasslands (50% grasslands, 75% temperate zones). Additionally, data were from experiments that may not be of adequate size (median size 400 m2despite excluding all experiments below 25 m2) or duration (median duration 6 years) to capture ecosystem‐scale responses to these low‐density and wide‐ranging taxa.

    Wild herbivore removal frequently impacted ecosystem functions; for example, net carbon uptake increased by three times in some instances. However, the magnitude and direction of effects, even within a single function, were highly variable.

    A focus on carbon cycling highlighted challenges in interpreting effects on a single function. While the effect of large herbivore exclusion on carbon cycling was slightly positive when its components (e.g. pools vs. fluxes of carbon) were aggregated, effects on individual components were variable and sometimes opposed.

    Given modern declines in large wild herbivores, it is critical to understand their effects on ecosystem function. However, this synthesis highlights strong variability in direction, magnitude, and modifiers of these effects. Some variation is likely due to disparity in what components are used to describe a given function. For example, for the carbon cycle we identified eight distinctly meaningful components, which are not easily combined yet are potentially misrepresentative of the larger cycle when considered alone. However, much of the observed difference in responses likely reflects real ecological variability across complex systems.

    To move towards a general predictive framework we must identify where variation in effect is due to methodological differences and where due to ecosystem context. Two critical steps forward are (a) additional quantitative synthetic analyses of large herbivores' effects on individual functions, and (b) improved, increased systematic exclosure research focusing on effects of large herbivores' exclusion on functions.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

    more » « less