skip to main content


This content will become publicly available on December 15, 2024

Title: Rational Design of the Alkali Metal Sn‐Based Mixed Halides with Large Birefringence and Wide Transparent Range
Abstract

Birefringent materials are widely used in various advanced optical systems, owing to their vital role in creating and controlling polarized light. Currently, Sn2+‐based compounds containing stereochemically active lone‐pair (SCALP) cations are extensively investigated and considered as one class of promising birefringent materials. To solve the problem of relatively narrow bandgap of Sn2+‐based compounds, alkali metals and multiple halogens are introduced to widen the bandgap during the research. Based on this strategy, four new Sn2+‐based halides, A2Sn2F5Cl and ASnFCl2(A = Rb and Cs), with large birefringence, short ultraviolet (UV) cutoff edge, and wide transparent range are successfully found. The birefringences of A2Sn2F5Cl (A = Rb and Cs) are 0.31 and 0.28 at 532 nm, respectively, which are among the largest in Sn‐based halide family. Remarkably, A2Sn2F5Cl possess relatively shorter UV cutoff edge (<300 nm) and broad infrared (IR) transparent range (up to 16.6 µm), so they can become promising candidates as birefringent materials applied in both UV and IR regions. In addition, a comprehensive analysis on crystal structures and structure–property relationship of metal Sn2+‐based halides is performed to fully understand this family. Therefore, this work provides insights into designing birefringent materials with balanced optical properties.

 
more » « less
NSF-PAR ID:
10480034
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    All‐inorganic metal halides such as Cs4PbX6and CsPbX3(X = Cl, Br, and I) are attracting global attention owing to their promise in optoelectronic applications. However, the presence of the toxic heavy metal lead (Pb) in these materials is a major concern. Here, a family of nontoxic high‐efficiency blue‐emitting all‐inorganic halides Rb2CuX3(X = Br and Cl) is reported; the compounds exhibit 1D crystal structures featuring anionic2−ribbons separated by Rb+cations. The measured record high photoluminescence quantum yield values range from 64% to 100% for Rb2CuBr3and Rb2CuCl3, respectively. Furthermore, the measured emission linewidths are quite narrow with full width at half maximum values of 54 and 52 nm for Rb2CuBr3and Rb2CuCl3, respectively. Single crystals of Rb2CuCl3demonstrate an anti‐Stokes photoluminescence signal, shown for the first time for Pb‐free metal halides. The discovery of highly efficient narrow blue emitters based on a nontoxic and inexpensive metal copper paves a way for the consideration of low‐cost and environmentally friendly copper halides for practical applications.

     
    more » « less
  2. Planar MO 3 (M = B, C, N) units have frequently been considered important structural components of novel birefringent crystal materials. An efficient approach for constructing new functional crystals is to simultaneously assemble multiple structural motifs together. Two compounds, Na 3 Rb 6 (CO 3 ) 3 (NO 3 ) 2 X·6H 2 O (X = Br and Cl), were synthesized by the integration of three kinds of anionic groups. More interestingly, the [CO 3 ] 2− and [NO 3 ] − groups in Na 3 Rb 6 (CO 3 ) 3 (NO 3 ) 2 X·6H 2 O are all coplanar with the aid of [NaO 7 ] 13− polyhedra, which can enhance the anisotropic polarizability. Na 3 Rb 6 (CO 3 ) 3 (NO 3 ) 2 X·6H 2 O have a large theoretical birefringence of ∼0.165 at 1064 nm and possess a short UV cut-off edge of ∼230 nm. Additionally, the two compounds exhibit good crystal growth habits. These properties illustrate that Na 3 Rb 6 (CO 3 ) 3 (NO 3 ) 2 X·6H 2 O are promising UV birefringent crystals. 
    more » « less
  3. Sn‐based perovskites are promising Pb‐free photovoltaic materials with an ideal 1.3 eV bandgap. However, to date, Sn‐based thin film perovskite solar cells have yielded relatively low power conversion efficiencies (PCEs). This is traced to their poor photophysical properties (i.e., short diffusion lengths (<30 nm) and two orders of magnitude higher defect densities) than Pb‐based systems. Herein, it is revealed that melt‐synthesized cesium tin iodide (CsSnI3) ingots containing high‐quality large single crystal (SC) grains transcend these fundamental limitations. Through detailed optical spectroscopy, their inherently superior properties are uncovered, with bulk carrier lifetimes reaching 6.6 ns, doping concentrations of around 4.5 × 1017cm−3, and minority‐carrier diffusion lengths approaching 1 µm, as compared to their polycrystalline counterparts having ≈54 ps, ≈9.2 × 1018cm−3, and ≈16 nm, respectively. CsSnI3SCs also exhibit very low surface recombination velocity of ≈2 × 103cm s−1, similar to Pb‐based perovskites. Importantly, these key parameters are comparable to high‐performance p‐type photovoltaic materials (e.g., InP crystals). The findings predict a PCE of ≈23% for optimized CsSnI3SCs solar cells, highlighting their great potential.

     
    more » « less
  4. Abstract

    Borate halides are an ideal materials class from which to design high‐performance nonlinear optical (NLO) materials. Currently, borate fluorides, chlorides, and bromides are extensively investigated while borate iodide materials discovery remains rare because of the perceived synthetic challenges. We report a new borate iodide, Pb2BO3I, synthesized by a straightforward hydrothermal method. The Pb2BO3I chemical formula conceals that the compound exhibits a structure similar to the well‐established KBe2BO3F2(KBBF), which we show supports the highest second‐harmonic generation (SHG) at 1064 nm in the KBBF family, 10 × KH2PO4(KDP), arising from the inclusion of Pb2+and Iand the crystal chemistry. Our work shows that KBBF‐related compounds can be synthesized incorporating iodide and exhibit superior NLO responses.

     
    more » « less
  5. Abstract

    Borate halides are an ideal materials class from which to design high‐performance nonlinear optical (NLO) materials. Currently, borate fluorides, chlorides, and bromides are extensively investigated while borate iodide materials discovery remains rare because of the perceived synthetic challenges. We report a new borate iodide, Pb2BO3I, synthesized by a straightforward hydrothermal method. The Pb2BO3I chemical formula conceals that the compound exhibits a structure similar to the well‐established KBe2BO3F2(KBBF), which we show supports the highest second‐harmonic generation (SHG) at 1064 nm in the KBBF family, 10 × KH2PO4(KDP), arising from the inclusion of Pb2+and Iand the crystal chemistry. Our work shows that KBBF‐related compounds can be synthesized incorporating iodide and exhibit superior NLO responses.

     
    more » « less