skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chord measures in integral geometry and their Minkowski problems
Abstract To the families of geometric measures of convex bodies (the area measures of Aleksandrov‐Fenchel‐Jessen, the curvature measures of Federer, and the recently discovered dual curvature measures) a new family is added. The new family of geometric measures, called chord measures, arises from the study of integral geometric invariants of convex bodies. The Minkowski problems for the new measures and their logarithmic variants are proposed and attacked. When the given ‘data’ is sufficiently regular, these problems are a new type of fully nonlinear partial differential equations involving dual quermassintegrals of functions. Major cases of these Minkowski problems are solved without regularity assumptions.  more » « less
Award ID(s):
2005875
PAR ID:
10480116
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Communications on Pure and Applied Mathematics
ISSN:
0010-3640
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Chord measures are newly discovered translation-invariant geometric measures of convex bodies in R n {{\mathbb{R}}}^{n} , in addition to Aleksandrov-Fenchel-Jessen’s area measures. They are constructed from chord integrals of convex bodies and random lines. Prescribing the L p {L}_{p} chord measures is called the L p {L}_{p} chord Minkowski problem in the L p {L}_{p} Brunn-Minkowski theory, which includes the L p {L}_{p} Minkowski problem as a special case. This article solves the L p {L}_{p} chord Minkowski problem when p > 1 p\gt 1 and the symmetric case of 0 < p < 1 0\lt p\lt 1 . 
    more » « less
  2. This paper describes the theory of Minkowski problems for geometric measures in convex geometric analysis. The theory goes back to Minkowski and Aleksandrov and has been developed extensively in recent years. The paper surveys classical and new Minkowski problems studied in convex geometry, PDEs, and harmonic analysis, and structured in a conceptual framework of the Brunn-Minkowski theory, its extensions, and related subjects. 
    more » « less
  3. Abstract We derive a family of weighted scalar curvature monotonicity formulas for generalized Ricci flow, involving an auxiliary dilaton field evolving by a certain reaction–diffusion equation motivated by renormalization group flow. These scalar curvature monotonicities are dual to a new family of Perelman-type energy and entropy monotonicity formulas by coupling to a solution of the associated weighted conjugate heat equation. In the setting of Ricci flow, we further obtain a new family of convex Nash entropies and pseudolocality principles. 
    more » « less
  4. Using harmonic mean curvature flow, we establish a sharp Minkowski-type lower bound for total mean curvature of convex surfaces with a given area in Cartan-Hadamard $$3$$-manifolds. This inequality also improves the known estimates for total mean curvature in hyperbolic $$3$$-space. As an application, we obtain a Bonnesen-style isoperimetric inequality for surfaces with convex distance function in nonpositively curved $$3$$-spaces, via monotonicity results for total mean curvature. This connection between the Minkowski and isoperimetric inequalities is extended to Cartan–Hadamard manifolds of any dimension. 
    more » « less
  5. null (Ed.)
    We investigate the approximability of the following optimization problem. The input is an n× n matrix A=(Aij) with real entries and an origin-symmetric convex body K⊂ ℝn that is given by a membership oracle. The task is to compute (or approximate) the maximum of the quadratic form ∑i=1n∑j=1n Aij xixj=⟨ x,Ax⟩ as x ranges over K. This is a rich and expressive family of optimization problems; for different choices of matrices A and convex bodies K it includes a diverse range of optimization problems like max-cut, Grothendieck/non-commutative Grothendieck inequalities, small set expansion and more. While the literature studied these special cases using case-specific reasoning, here we develop a general methodology for treatment of the approximability and inapproximability aspects of these questions. The underlying geometry of K plays a critical role; we show under commonly used complexity assumptions that polytime constant-approximability necessitates that K has type-2 constant that grows slowly with n. However, we show that even when the type-2 constant is bounded, this problem sometimes exhibits strong hardness of approximation. Thus, even within the realm of type-2 bodies, the approximability landscape is nuanced and subtle. However, the link that we establish between optimization and geometry of Banach spaces allows us to devise a generic algorithmic approach to the above problem. We associate to each convex body a new (higher dimensional) auxiliary set that is not convex, but is approximately convex when K has a bounded type-2 constant. If our auxiliary set has an approximate separation oracle, then we design an approximation algorithm for the original quadratic optimization problem, using an approximate version of the ellipsoid method. Even though our hardness result implies that such an oracle does not exist in general, this new question can be solved in specific cases of interest by implementing a range of classical tools from functional analysis, most notably the deep factorization theory of linear operators. Beyond encompassing the scenarios in the literature for which constant-factor approximation algorithms were found, our generic framework implies that that for convex sets with bounded type-2 constant, constant factor approximability is preserved under the following basic operations: (a) Subspaces, (b) Quotients, (c) Minkowski Sums, (d) Complex Interpolation. This yields a rich family of new examples where constant factor approximations are possible, which were beyond the reach of previous methods. We also show (under commonly used complexity assumptions) that for symmetric norms and unitarily invariant matrix norms the type-2 constant nearly characterizes the approximability of quadratic maximization. 
    more » « less