skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Probing Magnetic Fields in Protoplanetary Disk Atmospheres through Polarized Near-IR Light Scattered by Aligned Grains
Abstract Magnetic fields play essential roles in protoplanetary disks. Magnetic fields in the disk atmosphere are of particular interest, as they are connected to the wind-launching mechanism. In this work, we study the polarization of the light scattered off of magnetically aligned grains in the disk atmosphere, focusing on the deviation of the polarization orientation from the canonical azimuthal direction, which may be detectable in near-IR polarimetry with instruments such as VLT/SPHERE. We show with a simple disk model that the polarization can even be oriented along the radial (rather than azimuthal) direction, especially in highly inclined disks with toroidally dominated magnetic fields. This polarization reversal is caused by the anisotropy in the polarizability of aligned grains and is thus a telltale sign of such grains. We show that the near-IR light is scattered mostly byμm-sized grains or smaller at theτ= 1 surface and such grains can be magnetically aligned if they contain superparamagnetic inclusions. For comparison with observations, we generate synthetic maps of the ratios ofUϕ/IandQϕ/I, which can be used to infer the existence of (magnetically) aligned grains through a negativeQϕ(polarization reversal) and/or a significant level ofUϕ/I. We show that two features observed in the existing data, an asymmetric distribution ofUϕwith respect to the disk minor axis and a spatial distribution ofUϕthat is predominantly positive or negative, are incompatible with scattering by spherical grains in an axisymmetric disk. They provide indirect evidence for scattering by aligned nonspherical grains.  more » « less
Award ID(s):
1815784
PAR ID:
10480173
Author(s) / Creator(s):
;
Publisher / Repository:
ApJ
Date Published:
Journal Name:
The Astronomical Journal
Volume:
164
Issue:
3
ISSN:
0004-6256
Page Range / eLocation ID:
99
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The HH 111 protostellar disk has recently been found to host a pair of spiral arms. Here we report the dust polarization results in the disk as well as the inner envelope around it, obtained with the Atacama Large Millimeter/submillimeter Array in continuum atλ∼ 870μm and ∼0.″05 resolution. In the inner envelope, polarization is detected with a polarization degree of ∼6% and an orientation almost everywhere parallel to the minor axis of the disk and thus likely to be due to the dust grains magnetically aligned mainly by toroidal fields. In the disk, the polarization orientation is roughly azimuthal on the far side and becomes parallel to the minor axis on the near side, with a polarization gap in between on the far side near the central protostar. The disk polarization degree is ∼2%. The polarized intensity is higher on the near side than the far side, showing a near–far side asymmetry. More importantly, the polarized intensity and thus polarization degree are lower in the spiral arms but higher in between the arms, showing an anticorrelation of the polarized intensity with the spiral arms. Our modeling results indicate that this anticorrelation is useful for constraining the polarization mechanism and is consistent with the dust self-scattering by the grains that have grown to a size of ∼150μm. The interarms are sandwiched and illuminated by two brighter spiral arms and thus have higher polarized intensity. Our dust self-scattering model can also reproduce the observed polarization orientation parallel to the minor axis on the near side and the observed azimuthal polarization orientation at the two disk edges in the major axis. Further modeling work is needed to study how to reproduce the observed near–far side asymmetry in the polarized intensity and the observed azimuthal polarization orientation on the far side. 
    more » « less
  2. Abstract Wide-field near-infrared (NIR) polarimetry was used to examine disk systems around two brown dwarfs (BDs) and two young stellar objects (YSOs) embedded in the Heiles Cloud 2 (HCl2) dark molecular cloud in Taurus as well as numerous stars located behind HCl2. Inclined disks exhibit intrinsic NIR polarization due to scattering of photospheric light, which is detectable even for unresolved systems. After removing polarization contributions from magnetically aligned dust in HCl2 determined from the background star information, significant intrinsic polarization was detected from the disk systems of one BD (ITG 17) and both YSOs (ITG 15, ITG 25), but not from the other BD (2M0444). The ITG 17 BD shows good agreement of the disk orientation inferred from the NIR and from published Atacama Large Millimeter/submillieter Array dust continuum imaging. ITG 17 was also found to reside in a 5200 au wide binary (or hierarchical quad star system) with the ITG 15 YSO disk system. The inferred disk orientations from the NIR for ITG 15 and ITG 17 are parallel to each other and perpendicular to the local magnetic field direction. The multiplicity of the system and the large BD disk nature could have resulted from formation in an environment characterized by misalignment of the magnetic field and the protostellar disks. 
    more » « less
  3. Abstract Millimeter and submillimeter observations of continuum linear dust polarization provide insight into dust grain growth in protoplanetary disks, which are the progenitors of planetary systems. We present the results of the first survey of dust polarization in protoplanetary disks at 870μm and 3 mm. We find that protoplanetary disks in the same molecular cloud at similar evolutionary stages can exhibit different correlations between observing wavelength and polarization morphology and fraction. We explore possible origins for these differences in polarization, including differences in dust populations and protostar properties. For RY Tau and MWC 480, which are consistent with scattering at both wavelengths, we present models of the scattering polarization from several dust grain size distributions. These models aim to reproduce two features of the observational results for these disks: (1) both disks have an observable degree of polarization at both wavelengths; and (2) the polarization fraction is higher at 3 mm than at 870μm in the centers of the disks. For both disks, these features can be reproduced by a power-law distribution of spherical dust grains with a maximum radius of 200μm and high optical depth. In MWC 480, we can also reproduce features (1) and (2) with a model containing large grains (amax= 490μm) near the disk midplane and small grains (amax= 140μm) above and below the midplane. 
    more » « less
  4. Abstract Given the important role turbulence plays in the settling and growth of dust grains in protoplanetary disks, it is crucial that we determine whether these disks are turbulent and to what extent. Protoplanetary disks are weakly ionized near the midplane, which has led to a paradigm in which largely laminar magnetic field structures prevail deeper in the disk, with angular momentum being transported via magnetically launched winds. Yet, there has been little exploration of the precise behavior of the gas within the bulk of the disk. We carry out 3D, local shearing box simulations that include all three low-ionization effects (ohmic diffusion, ambipolar diffusion, and the Hall effect) to probe the nature of magnetically driven gas dynamics 1–30 au from the central star. We find that gas turbulence can persist with a generous yet physically motivated ionization prescription (order unity Elsässer numbers). The gas velocity fluctuations range from 0.03 to 0.09 of the sound speedcsat the disk midplane to ∼csnear the disk surface, and are dependent on the initial magnetic field strength. However, the turbulent velocities do not appear to be strongly dependent on the field polarity, and thus appear to be insensitive to the Hall effect. The midplane turbulence has the potential to drive dust grains to collision velocities exceeding their fragmentation limit, and likely reduces the efficacy of particle clumping in the midplane, though it remains to be seen if this level of turbulence persists in disks with lower ionization levels. 
    more » « less
  5. Abstract Circumstellar disk dust polarization in the (sub)millimeter is, for the most part, not from dust grain alignment with magnetic fields but rather indicative of a combination of dust self-scattering with a yet unknown alignment mechanism that is consistent with mechanical alignment. While the observational evidence for scattering has been well established, that for mechanical alignment is less so. Circum-multiple dust structures in protostellar systems provide a unique environment to probe different polarization alignment mechanisms. We present ALMA Band 4 and Band 7 polarization observations toward the multiple young system L1448 IRS3B. The polarization in the two bands are consistent with each other, presenting multiple polarization morphologies. On the size scale of the inner envelope surrounding the circum-multiple disk, the polarization is consistent with magnetic field dust grain alignment. On the very small scale of compact circumstellar regions, we see polarization that is consistent with scattering around sourceaandc, which are likely the most optically thick components. Finally, we see polarization that is consistent with mechanical alignment of dust grains along the spiral dust structures, which would suggest that the dust is tracing the relative gas flow along the spiral arms. If the gas-flow dust grain alignment mechanism is dominant in these cases, disk dust polarization may provide a direct probe of the small-scale kinematics of the gas flow relative to the dust grains. 
    more » « less