skip to main content


Title: Microengineering 3D Collagen Matrices with Tumor‐Mimetic Gradients in Fiber Alignment
Abstract

Collagen fibers in the 3D tumor microenvironment (TME) exhibit complex alignment landscapes that are critical in directing cell migration through a process called contact guidance. Previous in vitro work studying this phenomenon has focused on quantifying cell responses in uniformly aligned environments. However, the TME also features short‐range gradients in fiber alignment that result from cell‐induced traction forces. Although the influence of graded biophysical taxis cues is well established, cell responses to physiological alignment gradients remain largely unexplored. In this work, fiber alignment gradients in biopsy samples are characterized and recreated using a new microfluidic biofabrication technique to achieve tunable sub‐millimeter to millimeter scale gradients. This study represents the first successful engineering of continuous alignment gradients in soft, natural biomaterials. Migration experiments on graded alignment show that human umbilical vein endothelial cells (HUVECs) exhibit increased directionality, persistence, and speed compared to uniform and unaligned fiber architectures. Similarly, patterned MDA‐MB‐231 breast cancer cell aggregates exhibit biased migration toward increasing fiber alignment, suggesting a role for alignment gradients as a taxis cue. This user‐friendly approach, requiring no specialized equipment, is anticipated to offer new insights into the biophysical cues that cells interpret as they traverse the extracellular matrix (ECM), with broad applicability in healthy and diseased tissue environments.

 
more » « less
NSF-PAR ID:
10480237
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Contact guidance is a major physical cue that modulates cancer cell morphology and motility, and is directly linked to the prognosis of cancer patients. Under physiological conditions, particularly in the three-dimensional (3D) extracellular matrix (ECM), the disordered assembly of fibers presents a complex directional bias to the cells. It is unclear how cancer cells respond to these noncoherent contact guidance cues. Here we combine quantitative experiments, theoretical analysis, and computational modeling to study the morphological and migrational responses of breast cancer cells to 3D collagen ECM with varying degrees of fiber alignment. We quantify the strength of contact guidance using directional coherence of ECM fibers, and find that stronger contact guidance causes cells to polarize more strongly along the principal direction of the fibers. Interestingly, sensitivity to contact guidance is positively correlated with cell aspect ratio, with elongated cells responding more strongly to ECM alignment than rounded cells. Both experiments and simulations show that cell–ECM adhesions and actomyosin contractility modulate cell responses to contact guidance by inducing a population shift between rounded and elongated cells. We also find that cells rapidly change their morphology when navigating the ECM, and that ECM fiber coherence modulates cell transition rates between different morphological phenotypes. Taken together, we find that subcellular processes that integrate conflicting mechanical cues determine cell morphology, which predicts the polarization and migration dynamics of cancer cells in 3D ECM.

     
    more » « less
  2. The tendon‐bone junction is a unique, mechanically dynamic, structurally graded anatomical zone, which transmits tensile loads between tendon and bone. Current surgical repair techniques rely on mechanical fixation and can result in high re‐failure rates. A new class of collagen biomaterial that contains discrete mineralized and structurally aligned regions linked by a continuous interface to mimic the graded osteotendinous insertion has been recently described. Here the combined influence of graded biomaterial environment and increasing levels of applied strain (0%–20%) on mesenchymal stem cell (MSC) orientation and alignment have been reported. Inosteotendinousscaffolds, which contain opposing gradients of mineral content and structural alignment characteristic of the native osteotendinous interface, MSC nuclear, and actin alignment is initially dictated by the local pore architecture, while applied tensile strain enhances cell alignment in the direction of strain. Comparatively, inlayeredscaffolds that do not contain any structural alignment cues, MSCs are randomly oriented in the unstrained condition, then become oriented in a direction perpendicular to applied strain. These findings provide an initial understanding of how scaffold architecture can provide significant, potentially competitive, feedback influencing MSC orientation under applied strain, and form the basis for future tissue engineering efforts to regenerate the osteotendinous enthesis.

     
    more » « less
  3. Abstract

    Strain gradients widely exist in development and physiological activities. The directional movement of cells is essential for proper cell localization, and directional cell migration in responses to gradients of chemicals, rigidity, density, and topography of extracellular matrices have been well‐established. However; it is unclear whether strain gradients imposed on cells are sufficient to drive directional cell migration. In this work, a programmable uniaxial cell stretch device is developed that creates controllable strain gradients without changing substrate stiffness or ligand distributions. It is demonstrated that over 60% of the single rat embryonic fibroblasts migrate toward the lower strain side in static and the 0.1 Hz cyclic stretch conditions at ≈4% per mm strain gradients. It is confirmed that such responses are distinct from durotaxis or haptotaxis. Focal adhesion analysis confirms higher rates of contact area and protrusion formation on the lower strain side of the cell. A 2D extended motor‐clutch model is developed to demonstrate that the strain‐introduced traction force determines integrin fibronectin pairs' catch‐release dynamics, which drives such directional migration. Together, these results establish strain gradient as a novel cue to regulate directional cell migration and may provide new insights in development and tissue repairs.

     
    more » « less
  4. Abstract

    Breast cancer brain metastasis marks the most advanced stage of breast cancer no longer considered curable with a median survival period of ∼4–16 months. Apart from the genetic susceptibility (subtype) of breast tumors, brain metastasis is also dictated by the biophysical/chemical interactions of tumor cells with native brain microenvironment, which remain obscure, primarily due to the lack of tunable biomimeticin vitromodels. To address this need, we utilized a biomimetic hyaluronic acid (HA) hydrogel platform to elucidate the impact of matrix stiffness on the behavior of MDA‐MB‐231Br cells, a brain metastasizing variant of the triple negative breast cancer line MDA‐MB‐231. We prepared HA hydrogels of varying stiffness (0.2–4.5 kPa) bracketing the brain relevant stiffness range to recapitulate the biophysical cues provided by brain extracellular matrix. In this system, we observed that the MDA‐MB‐231Br cell adhesion, spreading, proliferation, and migration significantly increased with the hydrogel stiffness. We also demonstrated that the stiffness based responses of these cells were mediated, in part, through the focal adhesion kinase‐phosphoinositide‐3 kinase pathway. This biomimetic material system with tunable stiffness provides an ideal platform to further the understanding of mechanoregulation associated with brain metastatic breast cancer cells. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1832–1841, 2018.

     
    more » « less
  5. Abstract

    Biomaterials that replicate patterns of microenvironmental signals from the stem cell niche offer the potential to refine platforms to regulate stem cell behavior. While significant emphasis has been placed on understanding the effects of biophysical and biochemical cues on stem cell fate, vascular‐derived or angiocrine cues offer an important alternative signaling axis for biomaterial‐based stem cell platforms. Elucidating dose‐dependent relationships between angiocrine cues and stem cell fate are largely intractable in animal models and 2D cell cultures. In this study, microfluidic mixing devices are leveraged to generate 3D hydrogels containing lateral gradients in vascular density alongside murine hematopoietic stem cells (HSCs). Regional differences in vascular density can be generated via embossed gradients in cell, matrix, or growth factor density. HSCs co‐cultured alongside vascular gradients reveal spatial patterns of HSC phenotype in response to angiocrine signals. Notably, decreased Akt signaling in high vessel density regions led to increased expansion of lineage‐positive hematopoietic cells. This approach offers a combinatorial tool to rapidly screen a continuum of microenvironments with varying vascular, biophysical, and biochemical cues to reveal the influence of local angiocrine signals on HSC fate.

     
    more » « less