skip to main content


This content will become publicly available on November 13, 2024

Title: Integrating microbiome science and evolutionary medicine into animal health and conservation
ABSTRACT

Microbiome science has provided groundbreaking insights into human and animal health. Similarly, evolutionary medicine – the incorporation of eco‐evolutionary concepts into primarily human medical theory and practice – is increasingly recognised for its novel perspectives on modern diseases. Studies of host–microbe relationships have been expanded beyond humans to include a wide range of animal taxa, adding new facets to our understanding of animal ecology, evolution, behaviour, and health. In this review, we propose that a broader application of evolutionary medicine, combined with microbiome science, can provide valuable and innovative perspectives on animal care and conservation. First, we draw on classic ecological principles, such as alternative stable states, to propose an eco‐evolutionary framework for understanding variation in animal microbiomes and their role in animal health and wellbeing. With a focus on mammalian gut microbiomes, we apply this framework to populations of animals under human care, with particular relevance to the many animal species that suffer diseases linked to gut microbial dysfunction (e.g. gut distress and infection, autoimmune disorders, obesity). We discuss diet and microbial landscapes (i.e. the microbes in the animal's external environment), as two factors that are (i) proposed to represent evolutionary mismatches for captive animals, (ii) linked to gut microbiome structure and function, and (iii) potentially best understood from an evolutionary medicine perspective. Keeping within our evolutionary framework, we highlight the potential benefits – and pitfalls – of modern microbial therapies, such as pre‐ and probiotics, faecal microbiota transplants, and microbial rewilding. We discuss the limited, yet growing, empirical evidence for the use of microbial therapies to modulate animal gut microbiomes beneficially. Interspersed throughout, we propose 12 actionable steps, grounded in evolutionary medicine, that can be applied to practical animal care and management. We encourage that these actionable steps be paired with integration of eco‐evolutionary perspectives into our definitions of appropriate animal care standards. The evolutionary perspectives proposed herein may be best appreciated when applied to the broad diversity of species under human care, rather than when solely focused on humans. We urge animal care professionals, veterinarians, nutritionists, scientists, and others to collaborate on these efforts, allowing for simultaneous care of animal patients and the generation of valuable empirical data.

 
more » « less
Award ID(s):
2131060
NSF-PAR ID:
10480272
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Cambridge Philosophical Society
Date Published:
Journal Name:
Biological Reviews
ISSN:
1464-7931
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Klassen, Jonathan L. (Ed.)
    ABSTRACT Omnivorous animals, including humans, harbor diverse, species-rich gut communities that impact their growth, development, and homeostasis. Model invertebrates are broadly accessible experimental platforms that enable linking specific species or species groups to host phenotypes, yet often their specialized diets and distinct gut microbiota make them less comparable to human and other mammalian and gut communities. The omnivorous cockroach Periplaneta americana harbors ∼4 × 10 2 bacterial genera within its digestive tract and is enriched with taxa commonly found in omnivorous mammals (i.e., Proteobacteria, Bacteroidetes , and Firmicutes ). These features make P. americana a valuable platform for identifying microbe-mediated host phenotypes with potential translations to mammals. Rearing P. americana insects under germfree conditions resulted in prolonging development time by ∼30% and an up to ∼8% reduction in body size along three dimensions. Germfree rearing resulted in downregulation of gene networks involved in growth, energy homeostasis, and nutrient availability. Reintroduction of a defined microbiota comprised of a subset of P. americana commensals to germfree insects did not recover normal growth and developmental phenotypes or transcriptional profiles observed in conventionally reared insects. These results are in contrast with specialist-feeding model insects (e.g., Drosophila ), where introduction of a single endemic bacterial species to germfree condition-reared specimens recovered normal host phenotypes. These data suggest that understanding microbe-mediated host outcomes in animals with species-rich communities should include models that typically maintain similarly diverse microbiomes. The dramatic transcriptional, developmental, and morphological phenotypes linked to gut microbiome status in this study illustrates how microbes are key players in animal growth and evolution. IMPORTANCE Broadly accessible model organisms are essential for illustrating how microbes are engaged in the growth, development, and evolution of animals. We report that germfree rearing of omnivorous Periplaneta americana cockroaches resulted in growth defects and severely disrupted gene networks that regulate development, which highlights the importance of gut microbiota in these host processes. Absence of gut microbiota elicited a starvation-like transcriptional response in which growth and development were inhibited while nutrient scavenging was enhanced. Additionally, reintroduction of a subset of cockroach gut bacterial commensals did not broadly recover normal expression patterns, illustrating that a particular microbiome composition may be necessary for normal host development. Invertebrate microbiota model systems that enable disentangling complex, species-rich communities are essential for linking microbial taxa to specific host phenotypes. 
    more » « less
  2. Abstract

    Microbial rewilding, whereby exposure to naturalistic environments can modulate or augment gut microbiomes and improve host-microbe symbiosis, is being harnessed as an innovative approach to human health, one that may also have significant value to animal care and conservation. To test for microbial rewilding in animal microbiomes, we used a unique population of wild-born ring-tailed lemurs (Lemur catta) that were initially held as illegal pets in unnatural settings and, subsequently, relocated to a rescue center in Madagascar where they live in naturalistic environments. Using amplicon and shotgun metagenomic sequencing of lemur and environmental microbiomes, we found multiple lines of evidence for microbial rewilding in lemurs that were transitioned from unnatural to naturalistic environments: A lemur’s duration of exposure to naturalistic settings significantly correlated with (a) increased compositional similarly to the gut communities of wild lemurs, (b) decreased proportions of antibiotic resistance genes that were likely acquired via human contact during pethood, and (c) greater covariation with soil microbiomes from natural habitats. Beyond the inherent psychosocial value of naturalistic environments, we find that actions, such as providing appropriate diets, minimizing contact with humans, and increasing exposure to natural environmental consortia, may assist in maximizing host-microbe symbiosis in animals under human care.

     
    more » « less
  3. Johnson, Karyn N. (Ed.)
    ABSTRACT Leeches are found in terrestrial, aquatic, and marine habitats on all continents. Sanguivorous leeches have been used in medicine for millennia. Modern scientific uses include studies of neurons, anticoagulants, and gut microbial symbioses. Hirudo verbana , the European medicinal leech, maintains a gut community dominated by two bacterial symbionts, Aeromonas veronii and Mucinivorans hirudinis , which sometimes account for as much as 97% of the total crop microbiota. The highly simplified gut anatomy and microbiome of H. verbana make it an excellent model organism for studying gut microbial dynamics. The North American medicinal leech, Macrobdella decora , is a hirudinid leech native to Canada and the northern United States. In this study, we show that M. decora symbiont communities are very similar to those in H. verbana. We performed an extensive study using field-caught M. decora and purchased H. verbana from two suppliers. Deep sequencing of the V4 region of the 16S rRNA gene allowed us to determine that the core microbiome of M. decora consists of Bacteroides , Aeromonas, Proteocatella , and Butyricicoccus. The analysis revealed that the compositions of the gut microbiomes of the two leech species were significantly different at all taxonomic levels. The R 2 value was highest at the genus and amplicon sequence variant (ASV) levels and much lower at the phylum, class, and order levels. The gut and bladder microbial communities were distinct. We propose that M. decora is an alternative to H. verbana for studies of wild-caught animals and provide evidence for the conservation of digestive-tract and bladder symbionts in annelid models. IMPORTANCE Building evidence implicates the gut microbiome in critical animal functions such as regulating digestion, nutrition, immune regulation, and development. Simplified, phylogenetically diverse models for hypothesis testing are necessary because of the difficulty of assigning causative relationships in complex gut microbiomes. Previous research used Hirudo verbana as a tractable animal model of digestive-tract symbioses. Our data show that Macrobdella decora may work just as well without the drawback of being an endangered organism and with the added advantage of easy access to field-caught specimens. The similarity of the microbial community structures of species from two different continents reveals the highly conserved nature of the microbial symbionts in sanguivorous leeches. 
    more » « less
  4. Abstract

    Milk is inhabited by a community of bacteria and is one of the first postnatal sources of microbial exposure for mammalian young. Bacteria in breast milk may enhance immune development, improve intestinal health, and stimulate the gut‐brain axis for infants. Variation in milk microbiome structure (e.g., operational taxonomic unit [OTU] diversity, community composition) may lead to different infant developmental outcomes. Milk microbiome structure may depend on evolutionary processes acting at the host species level and ecological processes occurring over lactation time, among others. We quantified milk microbiomes using 16S rRNA high‐throughput sequencing for nine primate species and for six primate mothers sampled over lactation. Our data set included humans (Homo sapiens, Philippines and USA) and eight nonhuman primate species living in captivity (bonobo [Pan paniscus], chimpanzee [Pan troglodytes], western lowland gorilla [Gorilla gorilla gorilla], Bornean orangutan [Pongo pygmaeus], Sumatran orangutan [Pongo abelii], rhesus macaque [Macaca mulatta], owl monkey [Aotus nancymaae]) and in the wild (mantled howler monkey [Alouatta palliata]). For a subset of the data, we paired microbiome data with nutrient and hormone assay results to quantify the effect of milk chemistry on milk microbiomes. We detected a core primate milk microbiome of seven bacterial OTUs indicating a robust relationship between these bacteria and primate species. Milk microbiomes differed among primate species with rhesus macaques, humans and mantled howler monkeys having notably distinct milk microbiomes. Gross energy in milk from protein and fat explained some of the variations in microbiome composition among species. Microbiome composition changed in a predictable manner for three primate mothers over lactation time, suggesting that different bacterial communities may be selected for as the infant ages. Our results contribute to understanding ecological and evolutionary relationships between bacteria and primate hosts, which can have applied benefits for humans and endangered primates in our care.

     
    more » « less
  5. Abstract

    Maternal transmission of microbes occurs across the animal kingdom and is vital for offspring development and long-term health. The mechanisms of this transfer are most well-studied in humans and other mammals but are less well-understood in egg-laying animals, especially those with no parental care. Here, we investigate the transfer of maternal microbes in the oviparous phrynosomatid lizard, Sceloporus virgatus. We compared the microbiota of three maternal tissues—oviduct, cloaca, and intestine—to three offspring sample types: egg contents and eggshells on the day of oviposition, and hatchling intestinal tissue on the day of hatching. We found that maternal identity is an important factor in hatchling microbiome composition, indicating that maternal transmission is occurring. The maternal cloacal and oviductal communities contribute to offspring microbiota in all three sample types, with minimal microbes sourced from maternal intestines. This indicates that the maternal reproductive microbiome is more important for microbial inheritance than the gut microbiome, and the tissue-level variation of the adult S. virgatus microbiota must develop as the hatchling matures. Despite differences between adult and hatchling communities, offspring microbiota were primarily members of the Enterobacteriaceae and Yersiniaceae families (Phylum Proteobacteria), consistent with this and past studies of adult S. virgatus microbiomes.

     
    more » « less