skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating the Impact of an Exsolved H 2 O‐CO 2 Phase on Magma Chamber Growth and Longevity: A Thermomechanical Model
Abstract Magmatic volatiles drive pressure, temperature, and compositional changes in upper crustal magma chambers and alter the physical properties of stored magmas. Previous studies suggest that magmatic H2O content influences the growth and longevity of silicic chambers through regulating the size and frequency of eruptions and impacting the crystallinity‐temperature curve. However, there has been comparatively little exploration of how CO2impacts the evolution of magma chambers despite the strong influence of CO2on H2O solubility and the high concentrations of CO2often present in mafic systems. In this study, we integrate the thermodynamic effects of dissolved and exsolved H2O and CO2with the mechanics of open‐system magma chambers that interact thermally and mechanically with the crust. We applied this model to investigate how intrinsic variations in magmatic H2O‐CO2content influence the growth and longevity of silicic and mafic magma chambers. Our findings indicate that even with a tenfold increase in CO2content (up to 10,000 ppm), CO2plays a minimal role in long‐term chamber growth and longevity. While CO2content affects the magma compressibility, the resulting changes in eruption mass are balanced out by a commensurate change in eruption frequency so that the time‐averaged eruptive flux and long‐term chamber behavior remain similar. In contrast, H2O content strongly influences chamber growth and longevity. In silicic systems, high H2O contents hinder magma chamber growth by increasing the total eruptive flux and steepening the slope of the crystallinity‐temperature curve. In mafic systems, high H2O contents promote magma chamber growth by flattening the slope of the crystallinity‐temperature curve.  more » « less
Award ID(s):
2444709
PAR ID:
10480434
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
24
Issue:
12
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Water and carbon dioxide are the most abundant volatile components in terrestrial magmas. As they exsolve into magmatic vapour, they promote magma buoyancy, accelerating ascent and modulating eruptive dynamics. It is commonly thought that an increase in pre-eruptive volatile content produces an increase in eruption intensity. Using a conduit model for basaltic eruptions, covering the upper 6 km of conduit, we show that for the same chamber conditions mass eruption rate is not affected by CO2content, whereas an increase in H2O up to 10 wt.% produces an increase in eruption rate of an order of magnitude. It is only when CO2is injected in the magma reservoir from an external source that the resulting pressurisation will generate a strong increase in eruption rate. Results also show that ascent velocity and fragmentation depth are strongly affected by pre-eruptive volatile contents demonstrating a link between volatile content and eruptive style. 
    more » « less
  2. Abstract Crustal magma chambers can grow to be hundreds to thousands of cubic kilometers, potentially feeding catastrophic caldera‐forming eruptions. Smaller volume chambers are expected to erupt frequently and freeze quickly; a major outstanding question is how magma chambers ever grow to the sizes required to sustain the largest eruptions on Earth. We use a thermo‐mechanical model to investigate the primary factors that govern the extrusive:intrusive ratio in a chamber, and how this relates to eruption frequency, eruption size, and long‐term chamber growth. The model consists of three fundamental timescales: the magma injection timescaleτin, the cooling timescaleτcool, and the timescale for viscous relaxation of the crustτrelax. We estimate these timescales using geologic and geophysical data from four volcanoes (Laguna del Maule, Campi Flegrei, Santorini, and Aso) to compare them with the model. In each of these systems,τinis much shorter thanτcooland slightly shorter thanτrelax, conditions that in the model are associated with efficient chamber growth and simultaneous eruption. In addition, the model suggests that the magma chambers underlying these volcanoes are growing at rates between ~10−4and 10−2 km3/year, speeding up over time as the chamber volume increases. We find scaling relationships for eruption frequency and size that suggest that as chambers grow and volatiles exsolve, eruption frequency decreases but eruption size increases. These scaling relationships provide a good match to the eruptive history from the natural systems, suggesting that the relationships can be used to constrain chamber growth rates and volatile saturation state from the eruptive history alone. 
    more » « less
  3. Abstract The most explosive basaltic scoria cone eruption yet documented (>20 km high plumes) occurred at Sunset Crater (Arizona) ca. 1085 AD by undetermined eruptive mechanisms. We present melt inclusion analysis, including bubble contents by Raman spectroscopy, yielding high total CO2(approaching 6000 ppm) and S (~2000 ppm) with moderate H2O (~1.25 wt%). Two groups of melt inclusions are evident, classified by bubble vol%. Modeling of post-entrapment modification indicates that the group with larger bubbles formed as a result of heterogeneous entrapment of melt and exsolved CO2and provides evidence for an exsolved CO2phase at magma storage depths of ~15 km. We argue that this exsolved CO2phase played a critical role in driving this explosive eruption, possibly analogous to H2O exsolution driving silicic caldera-forming eruptions. Because of their distinct gas compositions relative to silicic magmas (high S and CO2), even modest volume explosive basaltic eruptions could impact the atmosphere. 
    more » « less
  4. Abstract Interpreting unrest at silicic volcanoes requires knowledge of the magma storage conditions and dynamics that precede eruptions. The Laguna del Maule volcanic field, Chile, has erupted ~40 km3of rhyolite over the last 20 ka. Astonishing rates of sustained surface inflation at >25 cm/year for >12 years reveal a large, restless system. Integration of geochronologic, petrologic, geomorphic, and geophysical observations provides an unusually rich context to interpret ongoing and prehistoric processes. We present new volatile (H2O, CO2, S, F, and Cl), trace element, and major element concentrations from 109 melt inclusions hosted in quartz, plagioclase, and olivine from seven eruptions. Silicic melts contain up to 8.0 wt. % H2O and 570 ppm CO2. In rhyolites melt inclusions track decompression‐driven fractional crystallization as magma ascended from ~14 to 4 km. This mirrors teleseismic tomography and magnetotelluric findings that reveal a domain containing partial melt spanning from 14 to 4 km. Ce and Cl contents of rhyolites support the generation of compositionally distinct domains of eruptible rhyolite within the larger reservoir. Heat, volatiles, and melt derived from episodic mafic recharge likely incubate and grow the shallow reservoir. Olivine‐hosted melt inclusions in mafic tephra contain up to 2.5 wt. % H2O and 1,140 ppm CO2and proxy for the volatile load delivered via recharge into the base of the silicic mush at ~14 to 8 km. We propose that mafic recharge flushes deeper reaches of the magma reservoir with CO2that propels H2O exsolution, upward accumulation of fluid, pressurization, and triggering of rhyolitic eruptions. 
    more » « less
  5. Constraining the volatile content of magmas is critical to our understanding of eruptive processes and their deep Earth cycling essential to planetary habitability [R. Dasgupta, M. M. Hirschmann, Earth Planet. Sci. Lett. 298 , 1 (2010)]. Yet, much of the work thus far on magmatic volatiles has been dedicated to understanding their cycling through subduction zones. Further, studies of intraplate mafic volcanism have disproportionately focused on Hawaii [P. E. Wieser et al., Geochem. Geophys. Geosyst. 22 , e2020GC009364 (2021)], making assessments of the overall role of intraplate volcanoes in the global volatile cycles a challenge. Additionally, while mafic volcanoes are the most common landform on Earth and the Solar System [C. A. Wood, J. Volcanol. Geotherm. Res. 7 , 387–413 (1980)], they tend to be overlooked in favor of silicic volcanoes when it comes to their potential for explosivity. Here, we report primitive (olivine-hosted, with host Magnesium number – Mg# 78 to 88%) melt inclusion (MI) data from Fogo volcano, Cabo Verde, that suggest that oceanic intraplate silica-undersaturated explosive eruptions sample volatile-rich sources. Primitive MI (melt Mg# 70 to 71%) data suggest that these melts are oxidized (NiNiO to NiNiO+1) and very high in volatiles (up to 2 wt% CO 2 , 2.8 wt% H 2 O, 6,000 ppm S, 1,900 ppm F, and 1,100 ppm Cl) making Fogo a global endmember. Storage depths calculated from these high volatile contents also imply that magma storage at Fogo occurs at mantle depths (~20 to 30 km) and that these eruptions are fed from the mantle. Our results suggest that oceanic intraplate mafic eruptions are sustained from the mantle by high volatile concentrations inherited from their source and that deep CO 2 exsolution (here up to ~800 MPa) drives their ascent and explosivity. 
    more » « less