skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Uncertainty Aware Proposal Segmentation for Unknown Object Detection
Recent efforts in deploying Deep Neural Networks for object detection in real world applications, such as autonomous driving, assume that all relevant object classes have been observed during training. Quantifying the performance of these models in settings when the test data is not represented in the training set has mostly focused on pixel-level uncertainty estimation techniques of models trained for semantic segmentation. This paper proposes to exploit additional predictions of semantic segmentation models and quantifying its confidences, followed by classification of object hypotheses as known vs. unknown, out of distribution objects. We use object proposals generated by Region Proposal Network (RPN) and adapt distance aware uncertainty estimation of semantic segmentation using Radial Basis Functions Networks (RBFN) for class agnostic object mask prediction. The augmented object proposals are then used to train a classifier for known vs. unknown objects categories. Experimental results demonstrate that the proposed method achieves parallel performance to state of the art methods for unknown object detection and can also be used effectively for reducing object detectors' false positive rate. Our method is well suited for applications where prediction of non-object background categories obtained by semantic segmentation is reliable.  more » « less
Award ID(s):
1925231
PAR ID:
10480460
Author(s) / Creator(s):
Publisher / Repository:
IEEE
Date Published:
Journal Name:
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
Format(s):
Medium: X
Location:
Waikola, Hawaii
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Training a semantic segmentation model requires large densely-annotated image datasets that are costly to obtain. Once the training is done, it is also difficult to add new object categories to such segmentation models. In this paper, we tackle the few-shot semantic segmentation problem, which aims to perform image segmentation task on unseen object categories merely based on one or a few support example(s). The key to solving this few-shot segmentation problem lies in effectively utilizing object information from support examples to separate target objects from the background in a query image. While existing methods typically generate object-level representations by averaging local features in support images, we demonstrate that such object representations are typically noisy and less distinguishing. To solve this problem, we design an object representation generator (ORG) module which can effectively aggregate local object features from support image( s) and produce better object-level representation. The ORG module can be embedded into the network and trained end-to-end in a weakly-supervised fashion without extra human annotation. We incorporate this design into a modified encoder-decoder network to present a powerful and efficient framework for few-shot semantic segmentation. Experimental results on the Pascal-VOC and MS-COCO datasets show that our approach achieves better performance compared to existing methods under both one-shot and five-shot settings. 
    more » « less
  2. Recent advances in object segmentation have demonstrated that deep neural networks excel at object segmentation for specific classes in color and depth images. However, their performance is dictated by the number of classes and objects used for training, thereby hindering generalization to never seen objects or zero-shot samples. To exacerbate the problem further, object segmentation using image frames rely on recognition and pattern matching cues. Instead, we utilize the ‘active’ nature of a robot and their ability to ‘interact’ with the environment to induce additional geometric constraints for segmenting zero-shot samples. In this paper, we present the first framework to segment unknown objects in a cluttered scene by repeatedly ‘nudging’ at the objects and moving them to obtain additional motion cues at every step using only a monochrome monocular camera. We call our framework NudgeSeg. These motion cues are used to refine the segmentation masks. We successfully test our approach to segment novel objects in various cluttered scenes and provide an extensive study with image and motion segmentation methods. We show an impressive average detection rate of over 86% on zero-shot objects. 
    more » « less
  3. null (Ed.)
    Training a semantic segmentation model requires large densely-annotated image datasets that are costly to obtain. Once the training is done, it is also difficult to add new ob- ject categories to such segmentation models. In this pa- per, we tackle the few-shot semantic segmentation prob- lem, which aims to perform image segmentation task on un- seen object categories merely based on one or a few sup- port example(s). The key to solving this few-shot segmen- tation problem lies in effectively utilizing object informa- tion from support examples to separate target objects from the background in a query image. While existing meth- ods typically generate object-level representations by av- eraging local features in support images, we demonstrate that such object representations are typically noisy and less distinguishing. To solve this problem, we design an ob- ject representation generator (ORG) module which can ef- fectively aggregate local object features from support im- age(s) and produce better object-level representation. The ORG module can be embedded into the network and trained end-to-end in a weakly-supervised fashion without extra hu- man annotation. We incorporate this design into a modified encoder-decoder network to present a powerful and efficient framework for few-shot semantic segmentation. Experimen- tal results on the Pascal-VOC and MS-COCO datasets show that our approach achieves better performance compared to existing methods under both one-shot and five-shot settings. 
    more » « less
  4. Lai, Yuan (Ed.)
    Mistrust is a major barrier to implementing deep learning in healthcare settings. Entrustment could be earned by conveying model certainty, or the probability that a given model output is accurate, but the use of uncertainty estimation for deep learning entrustment is largely unexplored, and there is no consensus regarding optimal methods for quantifying uncertainty. Our purpose is to critically evaluate methods for quantifying uncertainty in deep learning for healthcare applications and propose a conceptual framework for specifying certainty of deep learning predictions. We searched Embase, MEDLINE, and PubMed databases for articles relevant to study objectives, complying with PRISMA guidelines, rated study quality using validated tools, and extracted data according to modified CHARMS criteria. Among 30 included studies, 24 described medical imaging applications. All imaging model architectures used convolutional neural networks or a variation thereof. The predominant method for quantifying uncertainty was Monte Carlo dropout, producing predictions from multiple networks for which different neurons have dropped out and measuring variance across the distribution of resulting predictions. Conformal prediction offered similar strong performance in estimating uncertainty, along with ease of interpretation and application not only to deep learning but also to other machine learning approaches. Among the six articles describing non-imaging applications, model architectures and uncertainty estimation methods were heterogeneous, but predictive performance was generally strong, and uncertainty estimation was effective in comparing modeling methods. Overall, the use of model learning curves to quantify epistemic uncertainty (attributable to model parameters) was sparse. Heterogeneity in reporting methods precluded the performance of a meta-analysis. Uncertainty estimation methods have the potential to identify rare but important misclassifications made by deep learning models and compare modeling methods, which could build patient and clinician trust in deep learning applications in healthcare. Efficient maturation of this field will require standardized guidelines for reporting performance and uncertainty metrics. 
    more » « less
  5. null (Ed.)
    For robots to operate robustly in the real world, they should be aware of their uncertainty. However, most methods for object pose estimation return a single point estimate of the object’s pose. In this work, we propose two learned methods for estimating a distribution over an object’s orientation. Our methods take into account both the inaccuracies in the pose estimation as well as the object symmetries. Our first method, which regresses from deep learned features to an isotropic Bingham distribution, gives the best performance for orientation distribution estimation for non-symmetric objects. Our second method learns to compare deep features and generates a non-parametric histogram distribution. This method gives the best performance on objects with unknown symmetries, accurately modeling both symmetric and non-symmetric objects, without any requirement of symmetry annotation. We show that both of these methods can be used to augment an existing pose estimator. Our evaluation compares our methods to a large number of baseline approaches for uncertainty estimation across a variety of different types of objects. Code available at https://bokorn.github.io/orientation-distributions/ 
    more » « less