skip to main content


This content will become publicly available on August 1, 2024

Title: Candidate local parent Hamiltonian for the 3/7 fractional quantum Hall effect
While a parent Hamiltonian for Laughlin wave function has been long known in terms of the Haldane pseudopotentials, no parent Hamiltonians are known for the lowest-Landau-level projected wave functions of the composite fermion theory at with . If one takes the two lowest Landau levels to be degenerate, the Trugman-Kivelson interaction produces the unprojected 2/5 wave function as the unique zero energy solution. If the lowest three Landau levels are assumed to be degenerate, the Trugman-Kivelson interaction produces a large number of zero energy states at Landau level filling of 3/7. We propose that adding an appropriately constructed three-body interaction yields the unprojected wave function as the unique zero energy solution, and report extensive exact diagonalization studies that provide strong support to this proposal.  more » « less
Award ID(s):
2037990
NSF-PAR ID:
10480472
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Physical Review B
Date Published:
Journal Name:
Physical Review B
Volume:
108
Issue:
8
ISSN:
2469-9950
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present microscopic, multiple Landau level, (frustration-free and positive semi-definite) parent Hamiltonians whose ground states, realizing different quantum Hall fluids, are parton-like and whose excitations display either Abelian or non-Abelian braiding statistics. We prove ground state energy monotonicity theorems for systems with different particle numbers in multiple Landau levels, demonstrate S-duality in the case of toroidal geometry, and establish complete sets of zero modes of special Hamiltonians stabilizing parton-like states, specifically at filling factor\nu=2/3ν=2/3. The emergent Entangled Pauli Principle (EPP), introduced in [Phys. Rev. B 98, 161118(R) (2018)] and which defines the “DNA” of the quantum Hall fluid, is behind the exact determination of the topological characteristics of the fluid, including charge and braiding statistics of excitations, and effective edge theory descriptions. When the closed-shell condition is satisfied, the densest (i.e., the highest density and lowest total angular momentum) zero-energy mode is a unique parton state. We conjecture that parton-like states generally span the subspace of many-body wave functions with the two-bodyMM-clustering property within any given number of Landau levels, that is, wave functions withMMth-order coincidence plane zeroes and both holomorphic and anti-holomorphic dependence on variables. General arguments are supplemented by rigorous considerations for theM=3M=3case of fermions in four Landau levels. For this case, we establish that the zero mode counting can be done by enumerating certain patterns consistent with an underlying EPP. We apply the coherent state approach of [Phys. Rev. X 1, 021015 (2011)] to show that the elementary (localized) bulk excitations are Fibonacci anyons. This demonstrates that the DNA associated with fractional quantum Hall states encodes all universal properties. Specifically, for parton-like states, we establish a link with tensor network structures of finite bond dimension that emerge via root level entanglement.

     
    more » « less
  2. MDPI (Ed.)
    In this review, we discuss the physical characteristics of the magnetic dual chiral density wave (MDCDW) phase of dense quark matter and argue why it is a promising candidate for the interior matter phase of neutron stars. The MDCDW condensate occurs in the presence of a magnetic field. It is a single-modulated chiral density wave characterized by two dynamically generated parameters: the fermion quasiparticle mass m and the condensate spatial modulation q. The lowest-Landau-level quasiparticle modes in the MDCDW system are asymmetric about the zero energy, a fact that leads to the topological properties and anomalous electric transport exhibited by this phase. The topology makes the MDCDW phase robust against thermal phonon fluctuations, and as such, it does not display the Landau–Peierls instability, a staple feature of single-modulated inhomogeneous chiral condensates in three dimensions. The topology is also reflected in the presence of the electromagnetic chiral anomaly in the effective action and in the formation of hybridized propagating modes known as axion-polaritons. Taking into account that one of the axion-polaritons of this quark phase is gapped, we argue how incident g-ray photons can be converted into gapped axion-polaritons in the interior of a magnetar star in the MDCDW phase leading the star to collapse, a phenomenon that can serve to explain the so-called missing pulsar problem in the galactic center. 
    more » « less
  3. In this review, we discuss the physical characteristics of the magnetic dual chiral density wave (MDCDW) phase of dense quark matter and argue why it is a promising candidate for the interior matter phase of neutron stars. The MDCDW condensate occurs in the presence of a magnetic field. It is a single-modulated chiral density wave characterized by two dynamically generated parameters: the fermion quasiparticle mass m and the condensate spatial modulation q. The lowest-Landau-level quasiparticle modes in the MDCDW system are asymmetric about the zero energy, a fact that leads to the topological properties and anomalous electric transport exhibited by this phase. The topology makes the MDCDW phase robust against thermal phonon fluctuations, and as such, it does not display the Landau–Peierls instability, a staple feature of single-modulated inhomogeneous chiral condensates in three dimensions. The topology is also reflected in the presence of the electromagnetic chiral anomaly in the effective action and in the formation of hybridized propagating modes known as axion-polaritons. Taking into account that one of the axion-polaritons of this quark phase is gapped, we argue how incident γ-ray photons can be converted into gapped axion-polaritons in the interior of a magnetar star in the MDCDW phase leading the star to collapse, a phenomenon that can serve to explain the so-called missing pulsar problem in the galactic center. 
    more » « less
  4. MDPI (Ed.)
    In this review, we discuss the physical characteristics of the magnetic dual chiral density wave (MDCDW) phase of dense quark matter and argue why it is a promising candidate for the interior matter phase of neutron stars. The MDCDW condensate occurs in the presence of a magnetic field. It is a single-modulated chiral density wave characterized by two dynamically generated parameters: the fermion quasiparticle mass m and the condensate spatial modulation q. The lowest- Landau-level quasiparticle modes in the MDCDW system are asymmetric about the zero energy, a fact that leads to the topological properties and anomalous electric transport exhibited by this phase. The topology makes the MDCDW phase robust against thermal phonon fluctuations, and as such, it does not display the Landau–Peierls instability, a staple feature of single-modulated inhomogeneous chiral condensates in three dimensions. The topology is also reflected in the presence of the electromagnetic chiral anomaly in the effective action and in the formation of hybridized propagating modes known as axion-polaritons. Taking into account that one of the axion-polaritons of this quark phase is gapped, we argue how incident γ-ray photons can be converted into gapped axion-polaritons in the interior of a magnetar star in the MDCDW phase leading the star to collapse, a phenomenon that can serve to explain the so-called missing pulsar problem in the galactic center 
    more » « less
  5. We introduce and prove the “root theorem”, which establishes a condition for families of operators to annihilate all root states associated with zero modes of a given positive semi-definite k-body Hamiltonian chosen from a large class. This class is motivated by fractional quantum Hall and related problems, and features generally long-ranged, one-dimensional, dipole-conserving terms. Our theorem streamlines analysis of zero-modes in contexts where “generalized” or “entangled” Pauli principles apply. One major application of the theorem is to parent Hamiltonians for mixed Landau-level wave functions, such as unprojected composite fermion or parton-like states that were recently discussed in the literature, where it is difficult to rigorously establish a complete set of zero modes with traditional polynomial techniques. As a simple application, we show that a modified V1 pseudo-potential, obtained via retention of only half the terms, stabilizes the ν=1/2 Tao–Thouless state as the unique densest ground state.

     
    more » « less