skip to main content


Title: Accurate genetic and environmental covariance estimation with composite likelihood in genome-wide association studies

Genetic and environmental covariances between pairs of complex traits are important quantitative measurements that characterize their shared genetic and environmental architectures. Accurate estimation of genetic and environmental covariances in genome-wide association studies (GWASs) can help us identify common genetic and environmental factors associated with both traits and facilitate the investigation of their causal relationship. Genetic and environmental covariances are often modeled through multivariate linear mixed models. Existing algorithms for covariance estimation include the traditional restricted maximum likelihood (REML) method and the recent method of moments (MoM). Compared to REML, MoM approaches are computationally efficient and require only GWAS summary statistics. However, MoM approaches can be statistically inefficient, often yielding inaccurate covariance estimates. In addition, existing MoM approaches have so far focused on estimating genetic covariance and have largely ignored environmental covariance estimation. Here we introduce a new computational method, GECKO, for estimating both genetic and environmental covariances, that improves the estimation accuracy of MoM while keeping computation in check. GECKO is based on composite likelihood, relies on only summary statistics for scalable computation, provides accurate genetic and environmental covariance estimates across a range of scenarios, and can accommodate SNP annotation stratified covariance estimation. We illustrate the benefits of GECKO through simulations and applications on analyzing 22 traits from five large-scale GWASs. In the real data applications, GECKO identified 50 significant genetic covariances among analyzed trait pairs, resulting in a twofold power gain compared to the previous MoM method LDSC. In addition, GECKO identified 20 significant environmental covariances. The ability of GECKO to estimate environmental covariance in addition to genetic covariance helps us reveal strong positive correlation between the genetic and environmental covariance estimates across trait pairs, suggesting that common pathways may underlie the shared genetic and environmental architectures between traits.

 
more » « less
Award ID(s):
1712933
NSF-PAR ID:
10480495
Author(s) / Creator(s):
; ; ;
Editor(s):
Epstein, Michael P.
Publisher / Repository:
PLOS Genetics
Date Published:
Journal Name:
PLOS Genetics
Volume:
17
Issue:
1
ISSN:
1553-7404
Page Range / eLocation ID:
e1009293
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cosmological parameters encoding our understanding of the expansion history of the universe can be constrained by the accurate estimation of time delays arising in gravitationally lensed systems. We propose TD-CARMA, a Bayesian method to estimate cosmological time delays by modeling observed and irregularly sampled light curves as realizations of a continuous auto-regressive moving average (CARMA) process. Our model accounts for heteroskedastic measurement errors and microlensing, an additional source of independent extrinsic long-term variability in the source brightness. The semiseparable structure of the CARMA covariance matrix allows for fast and scalable likelihood computation using Gaussian process modeling. We obtain a sample from the joint posterior distribution of the model parameters using a nested sampling approach. This allows for “painless” Bayesian computation, dealing with the expected multimodality of the posterior distribution in a straightforward manner and not requiring the specification of starting values or an initial guess for the time delay, unlike existing methods. In addition, the proposed sampling procedure automatically evaluates the Bayesian evidence, allowing us to perform principled Bayesian model selection. TD-CARMA is parsimonious, and typically includes no more than a dozen unknown parameters. We apply TD-CARMA to six doubly lensed quasars HS2209+1914, SDSS J1001+5027, SDSS J1206+4332, SDSS J1515+1511, SDSS J1455+1447, and SDSS J1349+1227, estimating their time delays as −21.96 ± 1.448, 120.93 ± 1.015, 111.51 ± 1.452, 210.80 ± 2.18, 45.36 ± 1.93, and 432.05 ± 1.950, respectively. These estimates are consistent with those derived in the relevant literature, but are typically two to four times more precise.

     
    more » « less
  2. Abstract Motivation

    A large proportion of risk regions identified by genome-wide association studies (GWAS) are shared across multiple diseases and traits. Understanding whether this clustering is due to sharing of causal variants or chance colocalization can provide insights into shared etiology of complex traits and diseases.

    Results

    In this work, we propose a flexible, unifying framework to quantify the overlap between a pair of traits called UNITY (Unifying Non-Infinitesimal Trait analYsis). We formulate a Bayesian generative model that relates the overlap between pairs of traits to GWAS summary statistic data under a non-infinitesimal genetic architecture underlying each trait. We propose a Metropolis–Hastings sampler to compute the posterior density of the genetic overlap parameters in this model. We validate our method through comprehensive simulations and analyze summary statistics from height and body mass index GWAS to show that it produces estimates consistent with the known genetic makeup of both traits.

    Availability and implementation

    The UNITY software is made freely available to the research community at: https://github.com/bogdanlab/UNITY.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  3. A challenge to understanding biological diversification is accounting for community-scale processes that cause multiple, co-distributed lineages to co-speciate. Such processes predict non-independent, temporally clustered divergences across taxa. Approximate-likelihood Bayesian computation (ABC) approaches to inferring such patterns from comparative genetic data are very sensitive to prior assumptions and often biased toward estimating shared divergences. We introduce a full-likelihood Bayesian approach, ecoevolity, which takes full advantage of information in genomic data. By analytically integrating over gene trees, we are able to directly calculate the likelihood of the population history from genomic data, and efficiently sample the model-averaged posterior via Markov chain Monte Carlo algorithms. Using simulations, we find that the new method is much more accurate and precise at estimating the number and timing of divergence events across pairs of populations than existing approximate-likelihood methods. Our full Bayesian approach also requires several orders of magnitude less computational time than existing ABC approaches. We find that despite assuming unlinked characters (e.g., unlinked single-nucleotide polymorphisms), the new method performs better if this assumption is violated in order to retain the constant characters of whole linked loci. In fact, retaining constant characters allows the new method to robustly estimate the correct number of divergence events with high posterior probability in the face of character-acquisition biases, which commonly plague loci assembled from reduced-representation genomic libraries. We apply our method to genomic data from four pairs of insular populations of Gekko lizards from the Philippines that are not expected to have co-diverged. Despite all four pairs diverging very recently, our method strongly supports that they diverged independently, and these results are robust to very disparate prior assumptions. 
    more » « less
  4. Abstract

    Estimating phenotypic distributions of populations and communities is central to many questions in ecology and evolution. These distributions can be characterized by their moments (mean, variance, skewness and kurtosis) or diversity metrics (e.g. functional richness). Typically, such moments and metrics are calculated using community‐weighted approaches (e.g. abundance‐weighted mean). We propose an alternative bootstrapping approach that allows flexibility in trait sampling and explicit incorporation of intraspecific variation, and show that this approach significantly improves estimation while allowing us to quantify uncertainty.

    We assess the performance of different approaches for estimating the moments of trait distributions across various sampling scenarios, taxa and datasets by comparing estimates derived from simulated samples with the true values calculated from full datasets. Simulations differ in sampling intensity (individuals per species), sampling biases (abundance, size), trait data source (local vs. global) and estimation method (two types of community‐weighting, two types of bootstrapping).

    We introduce thetraitstrapR package, which contains a modular and extensible set of bootstrapping and weighted‐averaging functions that use community composition and trait data to estimate the moments of community trait distributions with their uncertainty. Importantly, the first function in the workflow,trait_fill, allows the user to specify hierarchical structures (e.g. plot within site, experiment vs. control, species within genus) to assign trait values to each taxon in each community sample.

    Across all taxa, simulations and metrics, bootstrapping approaches were more accurate and less biased than community‐weighted approaches. With bootstrapping, a sample size of 9 or more measurements per species per trait generally included the true mean within the 95% CI. It reduced average percent errors by 26%–74% relative to community‐weighting. Random sampling across all species outperformed both size‐ and abundance‐biased sampling.

    Our results suggest randomly sampling ~9 individuals per sampling unit and species, covering all species in the community and analysing the data using nonparametric bootstrapping generally enable reliable inference on trait distributions, including the central moments, of communities. By providing better estimates of community trait distributions, bootstrapping approaches can improve our ability to link traits to both the processes that generate them and their effects on ecosystems.

     
    more » « less
  5. Abstract

    Populations often contain discrete classes or morphs (e.g., sexual dimorphisms, wing dimorphisms, trophic dimorphisms) characterized by distinct patterns of trait expression. In quantitative genetic analyses, the different morphs can be considered as different environments within which traits are expressed. Genetic variances and covariances can then be estimated independently for each morph or in a combined analysis. In the latter case, morphs can be considered as separate environments in a bivariate analysis or entered as fixed effects in a univariate analysis. Although a common approach, we demonstrate that the latter produces downwardly biased estimates of additive genetic variance and heritability unless the quantitative genetic architecture of the traits concerned is perfectly correlated between the morphs. This result is derived for four widely used quantitative genetic variance partitioning methods. Given that theory predicts the evolution of genotype‐by‐environment (morph) interactions as a consequence of selection favoring different trait combinations in each morph, we argue that perfect correlations between the genetic architectures of the different morphs are unlikely. A sampling of the recent literature indicates that the majority of researchers studying traits expressed in different morphs recognize this and do estimate morph‐specific quantitative genetic architecture. However, ca. 16% of the studies in our sample utilized only univariate, fixed‐effects models. We caution against this approach and recommend that it be used only if supported by evidence that the genetic architectures of the different morphs do not differ.

     
    more » « less