skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SPARK-X: non-parametric modeling enables scalable and robust detection of spatial expression patterns for large spatial transcriptomic studies
Abstract Spatial transcriptomic studies are becoming increasingly common and large, posing important statistical and computational challenges for many analytic tasks. Here, we present SPARK-X, a non-parametric method for rapid and effective detection of spatially expressed genes in large spatial transcriptomic studies. SPARK-X not only produces effective type I error control and high power but also brings orders of magnitude computational savings. We apply SPARK-X to analyze three large datasets, one of which is only analyzable by SPARK-X. In these data, SPARK-X identifies many spatially expressed genes including those that are spatially expressed within the same cell type, revealing new biological insights.  more » « less
Award ID(s):
1712933
PAR ID:
10480499
Author(s) / Creator(s):
; ;
Publisher / Repository:
Genome Biology
Date Published:
Journal Name:
Genome Biology
Volume:
22
Issue:
1
ISSN:
1474-760X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent technological advances have enabled spatially resolved measurements of expression profiles for hundreds to thousands of genes in fixed tissues at single-cell resolution. However, scalable computational analysis methods able to take into consideration the inherent 3D spatial organization of cell types and nonuniform cellular densities within tissues are still lacking. To address this, we developed MERINGUE, a computational framework based on spatial autocorrelation and cross-correlation analysis to identify genes with spatially heterogeneous expression patterns, infer putative cell–cell communication, and perform spatially informed cell clustering in 2D and 3D in a density-agnostic manner using spatially resolved transcriptomic data. We applied MERINGUE to a variety of spatially resolved transcriptomic data sets including multiplexed error-robust fluorescence in situ hybridization (MERFISH), spatial transcriptomics, Slide-seq, and aligned in situ hybridization (ISH) data. We anticipate that such statistical analysis of spatially resolved transcriptomic data will facilitate our understanding of the interplay between cell state and spatial organization in tissue development and disease. 
    more » « less
  2. Abstract MotivationSpatial omics data demand computational analysis but many analysis tools have computational resource requirements that increase with the number of cells analyzed. This presents scalability challenges as researchers use spatial omics technologies to profile millions of cells. ResultsTo enhance the scalability of spatial omics data analysis, we developed a rasterization preprocessing framework called SEraster that aggregates cellular information into spatial pixels. We apply SEraster to both real and simulated spatial omics data prior to spatial variable gene expression analysis to demonstrate that such preprocessing can reduce computational resource requirements while maintaining high performance, including as compared to other down-sampling approaches. We further integrate SEraster with existing analysis tools to characterize cell-type spatial co-enrichment across length scales. Finally, we apply SEraster to enable analysis of a mouse pup spatial omics dataset with over a million cells to identify tissue-level and cell-type-specific spatially variable genes as well as spatially co-enriched cell types that recapitulate expected organ structures. Availability and implementationSEraster is implemented as an R package on GitHub (https://github.com/JEFworks-Lab/SEraster) with additional tutorials at https://JEF.works/SEraster. 
    more » « less
  3. Abstract Spatial gene expression in tissue is characterized by regions in which particular genes are enriched or depleted. Frequently, these regions contain nested inside them subregions with distinct expression patterns. Segmentation methods in spatial transcriptomic (ST) data extract disjoint regions maximizing similarity over the greatest number of genes, typically on a particular spatial scale, thus lacking the ability to find region-within-region structure. We present NeST, which extracts spatial structure through coexpression hotspots—regions exhibiting localized spatial coexpression of some set of genes. Coexpression hotspots identify structure on any spatial scale, over any possible subset of genes, and are highly explainable. NeST also performs spatial analysis of cell-cell interactions via ligand-receptor, identifying active areas de novo without restriction of cell type or other groupings, in both two and three dimensions. Through application on ST datasets of varying type and resolution, we demonstrate the ability of NeST to reveal a new level of biological structure. 
    more » « less
  4. Abstract Multivariate spatially oriented data sets are prevalent in the environmental and physical sciences. Scientists seek to jointly model multiple variables, each indexed by a spatial location, to capture any underlying spatial association for each variable and associations among the different dependent variables. Multivariate latent spatial process models have proved effective in driving statistical inference and rendering better predictive inference at arbitrary locations for the spatial process. High‐dimensional multivariate spatial data, which are the theme of this article, refer to data sets where the number of spatial locations and the number of spatially dependent variables is very large. The field has witnessed substantial developments in scalable models for univariate spatial processes, but such methods for multivariate spatial processes, especially when the number of outcomes are moderately large, are limited in comparison. Here, we extend scalable modeling strategies for a single process to multivariate processes. We pursue Bayesian inference, which is attractive for full uncertainty quantification of the latent spatial process. Our approach exploits distribution theory for the matrix‐normal distribution, which we use to construct scalable versions of a hierarchical linear model of coregionalization (LMC) and spatial factor models that deliver inference over a high‐dimensional parameter space including the latent spatial process. We illustrate the computational and inferential benefits of our algorithms over competing methods using simulation studies and an analysis of a massive vegetation index data set. 
    more » « less
  5. With the rise of big spatial data, many systems were developed on Hadoop, Spark, Storm, Flink, and similar big data systems to handle big spatial data. At the core of all these systems, they use a computational geometry library to represent points, lines, and polygons, and to process them to evaluate spatial predicates and spatial analysis queries. This paper evaluates four computational geometry libraries to assess their suitability for various workloads in big spatial data exploration, namely, GEOS, JTS, Esri Geometry API, and GeoLite. The latter is a library that we built specifically for this paper to test some ideas that are not present in other li- braries. For all the four libraries, we evaluate their computational efficiency and memory usage using a combination of micro- and macro-benchmarks on Spark. The paper gives recommendations on how to use these libraries for big spatial data exploration. 
    more » « less